Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1613-1618.DOI: 10.11772/j.issn.1001-9081.2024050587
• Network and communications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Dan WANG1,2, Wenhao ZHANG1,2( ), Lijuan PENG1,2
), Lijuan PENG1,2
												  
						
						
						
					
				
Received:2024-05-11
															
							
																	Revised:2024-07-18
															
							
																	Accepted:2024-07-22
															
							
							
																	Online:2024-07-25
															
							
																	Published:2025-05-10
															
							
						Contact:
								Wenhao ZHANG   
													About author:WANG Dan, born in 1982, Ph. D., professorate senior engineer. Her research interests include physical layer algorithms for mobile communication, signal processing.Supported by:通讯作者:
					张文豪
							作者简介:王丹(1982—),女,重庆人,正高级工程师,博士,主要研究方向:移动通信物理层算法、信号处理基金资助:CLC Number:
Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning[J]. Journal of Computer Applications, 2025, 45(5): 1613-1618.
王丹, 张文豪, 彭丽娟. 基于深度学习的智能反射面辅助通信系统信道估计[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1613-1618.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050587
| 参数 | 数值 | 参数 | 数值 | 
|---|---|---|---|
| 工作频段 | 28 GHz | 样本数 | 120 000 | 
| 系统带宽 | 100 MHz | 基站天线数 | 16( | 
| 子载波数 | 512 | RIS单元数 | 64( | 
| 路径数 | 3 | 噪声大小 | 10 dB | 
Tab.1 Dataset parameter setting
| 参数 | 数值 | 参数 | 数值 | 
|---|---|---|---|
| 工作频段 | 28 GHz | 样本数 | 120 000 | 
| 系统带宽 | 100 MHz | 基站天线数 | 16( | 
| 子载波数 | 512 | RIS单元数 | 64( | 
| 路径数 | 3 | 噪声大小 | 10 dB | 
| 网络模型 | 卷积层数 | 滤波器数量 | 网络结构 | 
|---|---|---|---|
| DnCNN | 1 | 64 | Conv+ReLU | 
| 2~16 | 64 | Conv+BN+ReLU | |
| 17 | 2 | Conv | |
| CDRN | 1~15 | 64 | Conv+BN+ReLU | 
| 16 | 2 | Conv | |
| 17~31 | 64 | Conv+BN+ReLU | |
| 32 | 2 | Conv | |
| 33~47 | 64 | Conv+BN+ReLU | |
| 48 | 2 | Conv | 
Tab.2 Parameter setting of comparison models
| 网络模型 | 卷积层数 | 滤波器数量 | 网络结构 | 
|---|---|---|---|
| DnCNN | 1 | 64 | Conv+ReLU | 
| 2~16 | 64 | Conv+BN+ReLU | |
| 17 | 2 | Conv | |
| CDRN | 1~15 | 64 | Conv+BN+ReLU | 
| 16 | 2 | Conv | |
| 17~31 | 64 | Conv+BN+ReLU | |
| 32 | 2 | Conv | |
| 33~47 | 64 | Conv+BN+ReLU | |
| 48 | 2 | Conv | 
| 信道估计方案 | FLOPs | 单轮运行时间/s | 
|---|---|---|
| DnCNN | 1 137 180 672 | 6.5 | 
| CDRN | 3 185 049 600 | 18.0 | 
| CDN | 1 816 657 920 | 7.5 | 
Tab. 3 Comparison of complexity of different schemes
| 信道估计方案 | FLOPs | 单轮运行时间/s | 
|---|---|---|
| DnCNN | 1 137 180 672 | 6.5 | 
| CDRN | 3 185 049 600 | 18.0 | 
| CDN | 1 816 657 920 | 7.5 | 
| 1 | LIU S, LEI M, ZHAO M J. Deep learning based channel estimation for intelligent reflecting surface aided MISO-OFDM systems[C]// Proceedings of the IEEE 92nd Vehicular Technology Conference. Piscataway: IEEE, 2020: 1-5. | 
| 2 | MISHRA D, JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 4659-4663. | 
| 3 | ZHENG B, ZHANG R. Intelligent reflecting surface-enhanced OFDM: channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2020, 9(4): 518-522. | 
| 4 | WEI L, HUANG C, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]// Proceedings of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop. Piscataway: IEEE, 2020: 1-5. | 
| 5 | ELBIR A M, PAPAZAFEIROPOULOS A, KOURTESSIS P, et al. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1447-1451. | 
| 6 | DAI L, WEI X. Distributed machine learning based downlink channel estimation for RIS assisted wireless communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4900-4909. | 
| 7 | KUNDU N K, McKAY M R. Channel estimation for reconfigurable intelligent surface aided MISO communications: from LMMSE to deep learning solutions[J]. IEEE Open Journal of the Communications Society, 2021, 2: 471-487. | 
| 8 | ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. | 
| 9 | ZHANG K, ZUO W, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622. | 
| 10 | FENG H, ZHAO Y. mmWave RIS-assisted SIMO channel estimation based on global attention residual network[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1179-1183. | 
| 11 | XIE W, XIAO J, ZHU P, et al. Deep compressed sensing-based cascaded channel estimation for RIS-aided communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(4): 846-850. | 
| 12 | WANG Y, LU H, SUN H. Channel estimation in IRS-enhanced mmWave system with super-resolution network[J]. IEEE Communications Letters, 2021, 25(8): 2599-2603. | 
| 13 | JIN Y, ZHANG J, ZHANG X, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11083-11088. | 
| 14 | LIU C, LIU X, NG D W K, et al. Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications[J]. IEEE Transactions on Wireless Communications, 2021, 21(2): 898-912. | 
| 15 | 重庆邮电大学空间通信研究院. 一种基于深度残差学习的智能反射面辅助通信系统信道估计方法:202310728186.1[P]. 2023-08-22. | 
| Space Communication Research Institute of Chongqing University of Posts and Telecommunications. A channel estimation method based on deep residual learning for intelligent reflecting surface assisted communication system: 202310728186.1[P]. 2023-08-22. | |
| 16 | WEI X, SHEN D, DAI L. Channel estimation for RIS assisted wireless communications — Part Ⅱ: an improved solution based on double-structured sparsity[J]. IEEE Communications Letters, 2021, 25(5): 1403-1407. | 
| 17 | HOU G, YANG Y, XUE J H. Residual dilated network with attention for image blind denoising[C]// Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2019: 248-253. | 
| 18 | 陈刚,廖永为,杨振国,等. 基于多特征融合的多尺度生成对抗网络图像修复算法[J]. 计算机应用, 2023, 43(2):536-544. | 
| CHEN G, LIAO Y W, YANG Z G, et al. Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion[J]. Journal of Computer Applications, 2023, 43(2):536-544. | |
| 19 | MENG Y, ZHANG J. A novel gray image denoising method using convolutional neural network[J]. IEEE Access, 2022, 10: 49657-49676. | 
| [1] | Weigang LI, Xinyi LI, Yongqiang WANG, Yuntao ZHAO. Point cloud classification and segmentation method based on adaptive dynamic graph convolution and parameter-free attention [J]. Journal of Computer Applications, 2025, 45(6): 1980-1986. | 
| [2] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. | 
| [3] | Tianchen HUA, Xiaoning MA, Hui ZHI. Portable executable malware static detection model based on shallow artificial neural network [J]. Journal of Computer Applications, 2025, 45(6): 1911-1921. | 
| [4] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. | 
| [5] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. | 
| [6] | Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network [J]. Journal of Computer Applications, 2025, 45(6): 1776-1783. | 
| [7] | Yuan SONG, Xin CHEN, Yarong LI, Yongwei LI, Yang LIU, Zhen ZHAO. Single-channel speech separation model based on auditory modulation Siamese network [J]. Journal of Computer Applications, 2025, 45(6): 2025-2033. | 
| [8] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. | 
| [9] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. | 
| [10] | Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection [J]. Journal of Computer Applications, 2025, 45(5): 1658-1670. | 
| [11] | Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation [J]. Journal of Computer Applications, 2025, 45(5): 1573-1581. | 
| [12] | Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation [J]. Journal of Computer Applications, 2025, 45(5): 1410-1414. | 
| [13] | Kai CHEN, Hailiang YE, Feilong CAO. Classification algorithm for point cloud based on local-global interaction and structural Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1671-1676. | 
| [14] | Lu CHEN, Huaiyao WANG, Jingyang LIU, Tao YAN, Bin CHEN. Robotic grasp detection with feature fusion of spatial-Fourier domain information under low-light environments [J]. Journal of Computer Applications, 2025, 45(5): 1686-1693. | 
| [15] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||