全文下载排行

    一年内发表文章 | 两年内 | 三年内 | 全部 | 最近1个月下载排行 | 最近1年下载排行

    当前位置: 最近1个月下载排行
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 大语言模型综述与展望
    秦小林, 古徐, 李弟诚, 徐海文
    《计算机应用》唯一官方网站    2025, 45 (3): 685-696.   DOI: 10.11772/j.issn.1001-9081.2025010128
    摘要832)   HTML70)    PDF (2035KB)(1772)    收藏

    大语言模型(LLM)是由具有大量参数(通常数十亿个权重或更多)的人工神经网络组成的一类语言模型,使用自监督学习或半监督学习对大量未标记文本进行训练,是当前生成式人工智能(AI)技术的核心。与传统语言模型相比,LLM通过大量的算力、参数和数据支持,展现出更强的语言理解与生成能力,广泛应用于机器翻译、问答系统、对话生成等众多任务中并表现卓越。现有的综述大多侧重于LLM的理论架构与训练方法,对LLM的产业级应用实践及技术生态演进的系统性探讨仍显不足。因此,在介绍LLM的基础架构、训练技术及发展历程的基础上,分析当前通用的LLM关键技术和以LLM为底座的先进融合技术。通过归纳总结现有研究,进一步阐述LLM在实际应用中面临的挑战,包括数据偏差、模型幻觉和计算资源消耗等问题,并对LLM的持续发展趋势进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 联邦学习的高效性研究综述
    葛丽娜, 王明禹, 田蕾
    《计算机应用》唯一官方网站    2025, 45 (8): 2387-2398.   DOI: 10.11772/j.issn.1001-9081.2024081119
    摘要168)   HTML29)    PDF (702KB)(563)    收藏

    联邦学习作为一个分布式机器学习框架,解决了数据孤岛问题,对个人及企业的隐私保护起到了重要作用。然而,由于联邦学习的特点,效率问题(尤其是高昂的成本)仍旧是目前急需解决的,这一现状仍不尽如人意。因此,全面调研并总结当前主流的关于联邦学习高效性的研究。首先,回顾高效联邦学习的背景,包括它的由来以及核心思想,并解释联邦学习的概念和分类;其次,论述基于联邦学习而产生的高效性问题,并将它们分为异构性问题、个性化问题和通信代价问题;再次,在此基础上详细分析并论述高效性问题的解决方案,并将高效联邦学习研究分为模型压缩优化方法以及通信优化方法这2个类别后进行调研;继次,通过对比分析,总结各联邦学习方法的优缺点,并阐述目前高效联邦学习中仍存在的挑战;最后,给出高效联邦学习领域未来的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. ScholatGPT:面向学术社交网络的大语言模型及智能应用
    袁成哲, 陈国华, 李丁丁, 朱源, 林荣华, 钟昊, 汤庸
    《计算机应用》唯一官方网站    2025, 45 (3): 755-764.   DOI: 10.11772/j.issn.1001-9081.2024101477
    摘要316)   HTML23)    PDF (2602KB)(927)    收藏

    针对现有大语言模型(LLM)在跨领域知识处理、实时学术信息更新及输出质量保证方面的局限,提出基于学术社交网络(ASN)的学者LLM——ScholatGPT。ScholatGPT结合知识图谱增强生成(KGAG)与检索增强生成(RAG),以提升精准语义检索与动态知识更新的能力,并通过微调优化以强化学术文本的生成质量。首先,基于学者网(SCHOLAT)关系数据构建学者知识图谱,并利用LLM进行语义增强;其次,提出KGAG检索模型,结合RAG实现多路混合检索,增强LLM的精准检索能力;最后,利用微调技术优化模型,使它在各学术领域的生成质量得到提升。实验结果表明,ScholatGPT在学术问答任务中的精确率达83.2%,相较于GPT-4o和AMiner AI提升了69.4和11.5个百分点,在学者画像、代表作识别和研究领域分类等任务上均表现优异。在回答相关性、连贯性和可读性方面,ScholatGPT取得了稳定且具有竞争力的表现,在专业性与可读性之间实现了较好的平衡。此外,基于ScholatGPT开发的学者智库和学术信息推荐系统等智能应用有效提升了学术信息获取的效率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 知识图谱与大语言模型协同的个性化学习推荐
    张学飞, 张丽萍, 闫盛, 侯敏, 赵宇博
    《计算机应用》唯一官方网站    2025, 45 (3): 773-784.   DOI: 10.11772/j.issn.1001-9081.2024070971
    摘要204)   HTML11)    PDF (1570KB)(715)    收藏

    个性化学习推荐是智慧教育领域的重要研究课题,它的核心目标是利用推荐算法和模型为学习者提供与他们的个人学习需求、兴趣、能力和历史相匹配的有效学习资源,从而提高学习者的学习效果。目前的推荐方法存在冷启动、数据稀疏、可解释性差和过度个性化等问题,而知识图谱与大语言模型的结合为解决上述问题提供了有力支持。首先,对个性化学习推荐的概念、研究现状等内容进行概述;其次,分别讨论知识图谱和大语言模型(LLM)的概念以及在个性化学习推荐中的具体应用;再次,总结知识图谱与LLM在个性化学习推荐中协同应用的方法;最后,展望知识图谱和LLM在个性化学习推荐中的未来发展方向,从而为个性化学习推荐领域的持续发展和创新实践提供借鉴和启示。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 学习行为增强的知识追踪模型
    张维, 龚中伟, 李志新, 罗佩华, 宋玲玲
    《计算机应用》唯一官方网站    2025, 45 (9): 2747-2754.   DOI: 10.11772/j.issn.1001-9081.2024081153
    摘要50)   HTML3)    PDF (1516KB)(710)    收藏

    现有的知识追踪(KT)模型未能有效利用学习行为信息,且忽略了不同学习行为对答题表现的贡献差异。因此,提出一种学习行为增强的知识追踪(LBBKT)模型。该模型采用门控残差网络(GRN)将学生的学习行为特征编码成4种上下文向量并把它们融入模型中,从而充分利用学习行为信息(答题速度、尝试次数和提示)更好地建模学生的学习过程。此外,利用变量选择网络对学生的学习行为特征进行选择性加权,并通过GRN抑制不相关特征的干扰,以增强相关特征对学生答题表现的影响,从而充分考虑不同学习行为对学生答题表现的差异性贡献。在多个公开数据集上的实验结果表明,LBBKT模型在预测准确性上显著优于对比的KT模型。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. CT图像环形伪影去除方法研究现状及展望
    唐瑶瑶, 朱叶晨, 刘仰川, 高欣
    《计算机应用》唯一官方网站    2024, 44 (3): 890-900.   DOI: 10.11772/j.issn.1001-9081.2023030305
    摘要468)   HTML20)    PDF (1994KB)(4295)    收藏

    环形伪影是各类型计算机断层扫描(CT)图像中最常见的伪影之一,通常是由于探测器像素对X射线响应不一致导致的。有效去除环形伪影能极大提高CT图像质量,提升后期诊断和分析的精度,是CT图像重建中的必要步骤。因此,对环形伪影去除(又称“环形伪影校正”)方法进行了系统梳理。首先,介绍环形伪影的表现和成因,给出常用的数据集、算法库;其次,依次介绍基于探测器校正、基于解析和迭代求解(分为投影数据预处理、CT图像重建、CT图像后处理环节)、基于深度学习(分为卷积神经网络、生成对抗网络)的环形伪影去除方法,并分析每类方法的原理、发展过程及优缺点;最后,归纳现有环形伪影去除方法在鲁棒性、数据集多样化、模型构建等方面存在的技术瓶颈,并对解决方案进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 联邦学习统计异质性综述
    俞浩, 范菁, 孙伊航, 董华, 郗恩康
    《计算机应用》唯一官方网站    2025, 45 (9): 2737-2746.   DOI: 10.11772/j.issn.1001-9081.2024091316
    摘要69)   HTML2)    PDF (2650KB)(577)    收藏

    联邦学习是一种强调隐私保护的分布式机器学习框架。然而,它在应对统计异质性问题时面临显著挑战。统计异质性源于参与节点间的数据分布差异,可能导致模型更新偏差、全局模型性能下降以及收敛不稳定等问题。针对上述问题,首先,详细分析统计异质性带来的主要问题,包括特征分布不一致、标签分布不均衡、数据量不对称以及数据质量参差不齐等;其次,对现有的联邦学习统计异质性解决方案进行系统综述,包括局部校正、聚类方法、客户端选择优化、聚合策略调整、数据共享、知识蒸馏以及解耦优化等,并逐一评估它们的优缺点与适用场景;最后,探讨了未来的相关研究方向,如设备计算能力感知、模型异构适应、隐私安全机制的优化以及跨任务迁移能力的提升,为应对实际应用中的统计异质性提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 多模态知识图谱表示学习综述
    王春雷, 王肖, 刘凯
    《计算机应用》唯一官方网站    2024, 44 (1): 1-15.   DOI: 10.11772/j.issn.1001-9081.2023050583
    摘要1348)   HTML118)    PDF (3449KB)(6362)    收藏

    在综合对比传统知识图谱表示学习模型优缺点以及适用任务后,发现传统的单一模态知识图谱无法很好地表示知识。因此,如何利用文本、图片、视频、音频等多模态数据进行知识图谱表示学习成为一个重要的研究方向。同时,详细分析了常用的多模态知识图谱数据集,为相关研究人员提供数据支持。在此基础上,进一步讨论了文本、图片、视频、音频等多模态融合下的知识图谱表示学习模型,并对其中各种模型进行了总结和比较。最后,总结了多模态知识图谱表示学习如何改善经典应用,包括知识图谱补全、问答系统、多模态生成和推荐系统在实际应用中的效果,并对未来的研究工作进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于CNN和Bi-LSTM的无监督日志异常检测模型
    尹春勇, 张杨春
    《计算机应用》唯一官方网站    2023, 43 (11): 3510-3516.   DOI: 10.11772/j.issn.1001-9081.2022111738
    摘要413)   HTML11)    PDF (1759KB)(2731)    收藏

    日志能记录系统运行时的具体状态,而自动化的日志异常检测对网络安全至关重要。针对日志语句随时间演变导致异常检测准确率低的问题,提出一种无监督日志异常检测模型LogCL。首先,通过日志解析技术将半结构化的日志数据转换为结构化的日志模板;其次,使用会话和固定窗口将日志事件划分为日志序列;再次,提取日志序列的数量特征,使用自然语言处理技术对日志模板进行语义特征提取,并利用词频-词语逆频率(TF-IWF)算法生成加权的句嵌入向量;最后,将特征向量输入一个并列的基于卷积神经网络(CNN)和双向长短期记忆(Bi-LSTM)网络的模型中进行检测。在两个公开的真实数据集上的实验结果表明,所提模型较基准模型LogAnomaly在异常检测的F1?score上分别提高了3.6和2.3个百分点。因此LogCL能够对日志数据进行有效的异常检测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 基于丰度协调技术的企业ESG指标预测模型
    李严, 叶冠华, 李雅文, 梁美玉
    《计算机应用》唯一官方网站    2025, 45 (2): 670-676.   DOI: 10.11772/j.issn.1001-9081.2024030262
    摘要147)   HTML5)    PDF (1400KB)(2201)    收藏

    环境、社会及治理(ESG)指标是评估企业可持续发展的重要指标。现有的ESG评估体系存在覆盖范围狭窄、主观性强和时效性差等问题,因此,迫切需要研究能利用企业数据准确预测ESG指标的预测模型。针对企业数据中ESG关联特征存在信息丰度不一致的问题,提出一种基于丰度协调技术的企业ESG指标预测模型RCT (Richness Coordination Transformer),其中上游丰度协调模块通过自编码器协调异质丰度特征,从而提高下游模块的ESG指标预测性能。在真实数据集上的实验结果表明,与模型时间卷积网络(TCN)、长短期记忆(LSTM)网络、自注意力模型(Transformer)、极限梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)相比,RCT模型在各项预测指标上均表现最优,验证了RCT模型在预测ESG指标上的有效性和优越性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 深层语义特征增强的ReLM中文拼写纠错模型
    张伟, 牛家祥, 马继超, 沈琼霞
    《计算机应用》唯一官方网站    2025, 45 (8): 2484-2490.   DOI: 10.11772/j.issn.1001-9081.2024071015
    摘要66)   HTML5)    PDF (1067KB)(485)    收藏

    ReLM (Rephrasing Language Model)是当前性能领先的中文拼写纠错(CSC)模型。针对它在复杂语义场景中存在特征表达不足的问题,提出深层语义特征增强的ReLM——FeReLM (Feature-enhanced Rephrasing Language Model)。该模型利用深度可分离卷积(DSC)技术融合特征提取模型BGE(BAAI General Embeddings)生成的深层语义特征与ReLM生成的整体特征,从而有效提升模型对复杂上下文的解析力和拼写错误的识别纠正精度。首先,在Wang271K数据集上训练FeReLM,使模型持续学习句子中的深层语义和复杂表达;其次,迁移训练好的权重,从而将模型学习到的知识应用于新的数据集并进行微调。实验结果表明,在ECSpell和MCSC数据集上与ReLM、MCRSpell (Metric learning of Correct Representation for Chinese Spelling Correction)和RSpell(Retrieval-augmented Framework for Domain Adaptive Chinese Spelling Check)等模型相比,FeReLM的精确率、召回率、F1分数等关键指标的提升幅度可达0.6~28.7个百分点。此外,通过消融实验验证了所提方法的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 基于无监督学习和监督学习的抽取式文本摘要综述
    夏吾吉, 黄鹤鸣, 更藏措毛, 范玉涛
    《计算机应用》唯一官方网站    2024, 44 (4): 1035-1048.   DOI: 10.11772/j.issn.1001-9081.2023040537
    摘要399)   HTML20)    PDF (1575KB)(1472)    收藏

    相较于生成式摘要方法,抽取式摘要方法简单易行、可读性强,使用范围广。目前,抽取式摘要方法综述文献仅对特定的某个方法或领域进行分析综述,缺乏多方面、多语种的系统性综述,因此探讨文本摘要生成任务的内涵,通过系统梳理和提炼现有的相关文献,对无监督学习和监督学习的抽取式文本摘要技术进行多维度、全方位的分析。首先,回顾文本摘要技术的发展,分析不同的抽取式文本摘要方法,主要包括基于规则、词频-逆文件概率(TF-IDF)、中心性方法、潜在语义、深度学习、图排序、特征工程和预训练学习等,并对比不同方法的差异;其次,详细介绍不同语种文本摘要生成的常用数据集和主流的评价指标,通过不同的实验指标对相同数据集上的方法进行比较;最后,指出当前抽取式文本摘要研究中存在的主要问题和挑战,并提出具体的解决思路和未来发展趋势。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于YOLOv5s的复杂场景下高效烟火检测算法YOLOv5s-MRD
    侯阳, 张琼, 赵紫煊, 朱正宇, 张晓博
    《计算机应用》唯一官方网站    2025, 45 (4): 1317-1324.   DOI: 10.11772/j.issn.1001-9081.2024040527
    摘要188)   HTML14)    PDF (4304KB)(622)    收藏

    现有的烟火检测方法主要依赖员工现场巡视,效率低且实时性差,因此,提出一种基于YOLOv5s的复杂场景下的高效烟火检测算法YOLOv5s-MRD (YOLOv5s-MPDIoU-RevCol-Dyhead)。首先,采用MPDIoU (Maximized Position-Dependent Intersection over Union)方法改进边框损失函数,以适应重叠或非重叠的边界框回归(BBR),从而提高BBR的准确性和效率;其次,利用可逆柱状结构RevCol(Reversible Column)网络模型思想重构YOLOv5s模型的主干网络,使它具有多柱状网络架构,并在模型的不同层之间加入可逆链接,从而最大限度地保持特征信息以提高网络的特征提取能力;最后,引入Dynamic head检测头,以统一尺度感知、空间感知和任务感知,从而在不额外增加计算开销的条件下显著提高目标检测头的准确性和有效性。实验结果表明:在DFS(Data of Fire and Smoke)数据集上,与原始YOLOv5s算法相比,所提算法的平均精度均值(mAP@0.5)提升了9.3%,预测准确率提升了6.6%,召回率提升了13.8%。可见,所提算法能满足当前烟火检测应用场景的要求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 基于YOLOv9的交通路口图像的多目标检测算法
    廖炎华, 鄢元霞, 潘文林
    《计算机应用》唯一官方网站    2025, 45 (8): 2555-2565.   DOI: 10.11772/j.issn.1001-9081.2024071020
    摘要96)   HTML10)    PDF (5505KB)(413)    收藏

    针对交通路口图像复杂,小目标难测且目标之间易遮挡以及天气和光照变化引发的颜色失真、噪声和模糊等问题,提出一种基于YOLOv9(You Only Look Once version 9)的交通路口图像的多目标检测算法ITD-YOLOv9(Intersection Target Detection-YOLOv9)。首先,设计CoT-CAFRNet (Chain-of-Thought prompted Content-Aware Feature Reassembly Network)图像增强网络,以提升图像质量,并优化输入特征;其次,加入通道自适应特征融合(iCAFF)模块,以增强小目标及重叠遮挡目标的提取能力;再次,提出特征融合金字塔结构BiHS-FPN (Bi-directional High-level Screening Feature Pyramid Network),以增强多尺度特征的融合能力;最后,设计IF-MPDIoU (Inner-Focaler-Minimum Point Distance based Intersection over Union)损失函数,以通过调整变量因子,聚焦关键样本,并增强泛化能力。实验结果表明,在自制数据集和SODA10M数据集上,ITD-YOLOv9算法的检测精度分别为83.8%和56.3%,检测帧率分别为64.8 frame/s和57.4 frame/s。与YOLOv9算法相比,ITD-YOLOv9算法的检测精度分别提升了3.9和2.7个百分点。可见,所提算法有效实现了交通路口的多目标检测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 基于改进公证人机制的联盟链跨链隐私保护方案
    郭晓涵, 姚中原, 张勇, 郭尚坤, 王超, 斯雪明
    《计算机应用》唯一官方网站    2023, 43 (10): 3028-3037.   DOI: 10.11772/j.issn.1001-9081.2022111641
    摘要370)   HTML28)    PDF (3640KB)(1204)    收藏

    联盟链跨链交互既增强了联盟链应用的功能,又扩展了应用的使用范围,因此对促进联盟链应用推广和产业发展意义重大。然而,目前联盟链跨链交互依然存在着用户身份和资产交易信息隐私泄露的问题,进而阻碍了联盟链跨链交互技术的广泛应用。针对以上问题,提出一个基于改进公证人机制的联盟链资产跨链隐私保护方案。首先,在合约层引入哈希锁定机制来改进传统的单签名公证人跨链方式,从而降低传统公证人机制中心化作恶的风险;其次,利用同态加密的特性在保证交易合法的前提下,实现对交易资产的可用不可见;同时,利用多密钥生成中心(KGC)模式的标识密码算法实现在网络层上的用户身份隐私保护。理论分析和实验结果表明,所提方案对联盟链跨链交互时交易中的用户身份信息和资产信息具有良好的隐私保护效果,且相较于其他同类方案在签名和验证方面的开销更低。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 应对零日攻击的混合车联网入侵检测系统
    方介泼, 陶重犇
    《计算机应用》唯一官方网站    2024, 44 (9): 2763-2769.   DOI: 10.11772/j.issn.1001-9081.2023091328
    摘要416)   HTML15)    PDF (2618KB)(2048)    收藏

    现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测系统。首先,设计了一种数据增强算法,通过先去除噪声再生成的方法解决了数据样本不平衡的问题;其次,将非线性特征交互引入复杂的特征组合,设计了一个特征工程模块;最后,将Transformer的自注意力机制和ANFIS的自适应学习方法相结合,以提高特征表征能力,减少对样本数据的依赖。在CICIDS-2017和UNSW-NB15入侵数据集上将所提系统与Dual-IDS等先进(SOTA)算法进行比较。实验结果表明,对于零日攻击,所提系统在CICIDS-2017入侵数据集上实现了98.64%的检测精确率和98.31%的F1值,在UNSW-NB15入侵数据集上实现了93.07%的检测精确率和92.43%的F1值,验证了所提算法在零日攻击检测方面的高准确性和强泛化能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 门罗币匿名及追踪技术综述
    林定康, 颜嘉麒, 巴楠登, 符朕皓, 姜皓晨
    《计算机应用》唯一官方网站    2022, 42 (1): 148-156.   DOI: 10.11772/j.issn.1001-9081.2021020296
    摘要1674)   HTML78)    PDF (723KB)(1164)    收藏

    虚拟数字货币为恐怖分子融资、洗钱、毒品交易等犯罪活动提供了温床,而门罗币作为新兴数字货币的代表,具有公认的高匿名性。针对利用门罗币匿名性犯罪的问题,从技术角度探索门罗币匿名技术及其追踪技术,综述近年来的研究进展,从而为有效应对基于区块链技术的犯罪提供技术支持。具体来说,总结了门罗币匿名技术的演进,并梳理了学术界关于门罗币匿名技术的追溯对策。首先,在匿名技术中,介绍了环签名、保证不可链接性(一次性公钥)、保证不可追溯性、提高匿名性的重要版本升级等。然后,在追踪技术中,介绍了0-mixin攻击、输出合并攻击、最新猜测攻击、封闭集攻击、泛洪攻击、恶意远程节点攻击、钱包环攻击等攻击方法。最后,基于对匿名技术和追溯对策的分析,得出了四点结论:门罗币的匿名技术和追踪技术的发展相互促进;RingCT的应用是一把双刃剑,既使得从币值出发的被动攻击方法失效,也使得主动攻击方法更加容易奏效;输出合并攻击和0-mixin攻击具有互补作用;门罗币的系统安全链条仍待理顺。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 面向军事领域知识问答系统的多策略检索增强生成方法
    张艳萍, 陈梅芳, 田昌海, 易子博, 胡文鹏, 罗威, 罗准辰
    《计算机应用》唯一官方网站    2025, 45 (3): 746-754.   DOI: 10.11772/j.issn.1001-9081.2024060833
    摘要225)   HTML13)    PDF (1254KB)(417)    收藏

    基于检索增强生成(RAG)的军事领域知识问答系统已经逐渐成为现代情报人员收集和分析情报的重要工具。针对目前RAG方法的应用策略中的混合检索存在可移植性不强以及非必要使用查询改写容易诱发语义漂移的问题,提出一种多策略检索增强生成(MSRAG)方法。首先,根据用户输入的查询特点自适应地匹配检索模型来召回相关文本;其次,利用文本过滤器提取出能够回答问题的关键文本片段;再次,使用文本过滤器进行内容有效性判断以启动基于同义词拓展的查询改写,并将初始查询与改写后的信息合并输入检索控制器以进行更有针对性的再次检索;最后,合并能够回答问题的关键文本片段和问题,并使用提示工程输入生成答案模型来生成响应返回给用户。实验结果表明,MSRAG方法在军事领域数据集(Military)和Medical数据集的ROUGE-L(Recall-Oriented Understudy for Gisting Evaluation Longest common subsequence)指标上相较于凸线性组合RAG方法分别提高了14.35和5.83个百分点。可见,MSRAG方法具备较强的通用性和可移植性,能够缓解非必要查询改写导致的语义漂移现象,有效帮助大模型生成更准确的答案。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 知识图谱在装备故障诊断领域的研究与应用综述
    武杰, 张安思, 吴茂东, 张仪宗, 王从宝
    《计算机应用》唯一官方网站    2024, 44 (9): 2651-2659.   DOI: 10.11772/j.issn.1001-9081.2023091280
    摘要616)   HTML55)    PDF (2858KB)(1956)    收藏

    知识图谱从装备故障诊断数据中提取有用的知识,通过(实体,关系,实体)的三元组方式,对复杂装备的故障诊断信息进行有效管理,实现装备故障的快速诊断。首先,介绍装备故障诊断知识图谱的相关概念,分析装备故障诊断领域知识图谱的构建框架;其次,归纳国内外装备故障诊断知识图谱的知识抽取、知识融合以及知识推理等几个关键技术的研究现状;最后,对目前装备故障诊断知识图谱应用进行总结,提出该领域知识图谱构建的不足和面临的挑战,并对未来装备故障诊断领域提供一些新的思路。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 基于消融包列的瓶颈带宽测量和定位方法
    贾民政 朱元忠 余镇危 张英
    计算机应用    2011, 31 (07): 1934-1938.  
    摘要1318)      PDF (861KB)(931)    收藏
    分析了现有的瓶颈带宽的测量技术和定位方法,对它们的优缺点进行了比较,提出一种基于消融包列法的瓶颈带宽测量和定位方法。消融包列由测量包和定位包组成,它可以在测量瓶颈带宽的同时定位瓶颈带宽,有效地减少了测量的次数并降低了测量负载。对该方法的正确性进行了理论证明和模拟实验验证,并与其他方法进行了比较,结果表明该方法具有测量负载低、定位准确等特点。
    参考文献 | 相关文章 | 多维度评价
    21. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断
    秦璟, 秦志光, 李发礼, 彭悦恒
    《计算机应用》唯一官方网站    2024, 44 (9): 2970-2974.   DOI: 10.11772/j.issn.1001-9081.2023091371
    摘要315)   HTML8)    PDF (1067KB)(1918)    收藏

    抑郁症的诊断主要依赖于医师的咨询和量表评估等主观方法,可能导致误诊。脑电图(EEG)具有高时间分辨率、低成本、易于设置和无创等优点,因此可以用作精神障碍(如抑郁症)的定量测量工具。深度学习算法目前在EEG信号上有多种应用,其中就包括抑郁症的诊断和分类。EGG信号在通过自注意力机制处理时有大量的冗余部分,因此,提出一种基于概率稀疏自注意力机制的卷积神经网络(PSANet)。首先,根据采样因数在自注意力机制中选取少量最关键的注意力点,在运用自注意力机制的同时克服它计算成本高的缺点,使它可以在脑电长序列数据上应用;同时将脑电图与患者的生理量表进行嵌合,从而进行多维度诊断。在一个包含抑郁症患者和健康对照组的数据集上进行实验评估,实验结果表明,PSANet表现出较高的分类准确性,参数量也低于EEGNet等对比方法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 基于粗糙图的网络风险评估模型
    黄光球 李艳
    计算机应用    2010, 30 (1): 190-195.  
    摘要1416)      PDF (1005KB)(1249)    收藏
    针对在进行网络安全分析时所获得的信息系统是不完备的、粗糙的这一特性,将网络攻击过程类比于粗糙不确定性问题的关系挖掘过程,提出基于粗糙图的网络风险评估模型。该模型由部件节点粗糙关联网络、攻击图的粗糙图生成算法以及网络风险最大流分析算法三部分主要内容组成;并以一个具有代表性的网络系统实例阐明了该模型的使用方法,验证了模型的正确性。模型优势分析表明其较以往的攻击图、风险评价模型更能真实地反映实际情况,所获得的评估结论、安全建议等也更加准确、合理。
    相关文章 | 多维度评价
    23. 物联网应用中的可解释人工智能研究综述
    赵小阳, 许新征, 李仲年
    《计算机应用》唯一官方网站    2025, 45 (7): 2169-2179.   DOI: 10.11772/j.issn.1001-9081.2024070927
    摘要81)   HTML6)    PDF (2756KB)(1546)    收藏

    在物联网(IoT)时代,人工智能(AI)与IoT的结合已经成为推动技术发展和应用创新的重要趋势。随着设备连接数量的指数级增长,提升终端用户对智能系统的信任度变得尤为关键。可解释人工智能(XAI)指能提供它们的决策过程和结果解释的AI系统。XAI的出现推动了AI技术的发展,并增强了用户对AI系统的信任。因此,对IoT应用中的XAI研究进行综述。首先,介绍IoT和XAI的相关背景及意义;其次,介绍XAI的定义及关键技术;接着,介绍传统AI驱动的IoT应用的最新进展和XAI驱动的IoT应用的最新进展;最后,对XAI在IoT应用中的未来发展方向和相关挑战分别进行总结和展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 基于集成学习的雷达自动目标识别综述
    洪梓榕, 包广清
    《计算机应用》唯一官方网站    2025, 45 (2): 371-382.   DOI: 10.11772/j.issn.1001-9081.2024020179
    摘要188)   HTML9)    PDF (1391KB)(1233)    收藏

    雷达自动目标识别(RATR)在军事和民用领域中都有广泛的应用。由于集成学习通过集成已有的机器学习模型改善模型分类性能,具有较好的鲁棒性,因此被越来越多地应用于雷达目标检测与识别领域。系统梳理和提炼现有相关文献对集成学习在RATR中的研究进展。首先,介绍集成学习的概念、框架与发展历程,将集成学习与传统机器学习、深度学习方法对比,并总结集成学习理论和常见集成学习方法的优势、不足及研究的主要聚焦点;其次,简述RATR的概念;接着,重点阐述集成学习在不同雷达图像分类特征中的应用,详细讨论基于合成孔径雷达(SAR)和高分辨距离像(HRRP)的目标检测与识别方法,并总结这些方法的研究进展和应用成效;最后,讨论RATR以及集成学习所面临的挑战,并对集成学习在雷达目标识别领域的应用进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. 可解释的深度知识追踪方法综述
    索晋贤, 张丽萍, 闫盛, 王东奇, 张雅雯
    《计算机应用》唯一官方网站    2025, 45 (7): 2043-2055.   DOI: 10.11772/j.issn.1001-9081.2024070970
    摘要198)   HTML31)    PDF (2726KB)(855)    收藏

    知识追踪(KT)是一种认知诊断方法,旨在通过学习者的历史答题记录,模拟学习者对于学习知识的掌握程度,最终预测学习者未来的答题情况。目前基于深度神经网络模型的知识追踪技术以强大的特征提取能力和优越的预测能力成为知识追踪领域研究的热点;然而,基于深度学习的知识追踪模型通常缺乏较好的可解释性。清晰的可解释性不仅可以让学习者和教师充分理解知识追踪模型的推理过程和预测结果,从而为下一步学习制定符合当前知识状态的学习计划,还能够提升学习者和教师对知识追踪模型的信任程度。因此,对可解释的深度知识追踪(DKT)方法进行综述。首先,介绍知识追踪的发展历程,并介绍可解释性的定义和必要性;其次,从特征提取和模型内部提升两方面,对解决DKT模型缺乏可解释性而提出的改进方法进行总结和梳理;再次,介绍现有的可供研究者使用的相关公开数据集,并分析数据集内的数据特征对可解释性的影响,从而探讨如何从模型性能和可解释性两个方面对知识追踪模型进行评价,并整理DKT模型在不同数据集上的性能表现;最后,对DKT模型目前存在的问题提出一些未来可能的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. DoS攻击下基于APF和DDPG算法的无人机安全集群控制
    林柄权, 刘磊, 李华峰, 刘晨
    《计算机应用》唯一官方网站    2025, 45 (4): 1241-1248.   DOI: 10.11772/j.issn.1001-9081.2024040464
    摘要136)   HTML2)    PDF (4132KB)(348)    收藏

    针对拒绝服务(DoS)攻击下无人机(UAV)通信阻塞、运动轨迹不可预测的问题,在人工势场法(APF)和深度确定性策略梯度(DDPG)融合框架下研究DoS攻击期间的多UAV安全集群控制策略。首先,使用Hping3对所有UAV进行DoS攻击检测,以实时确定UAV集群的网络环境;其次,当未检测到攻击时,采用传统的APF进行集群飞行;再次,在检测到攻击后,将被攻击的UAV标记为动态障碍物,而其他UAV切换为DDPG算法生成的控制策略;最后,所提框架实现APF和DDPG的协同配合及优势互补,并通过在Gazebo中进行仿真实验验证DDPG算法的有效性。仿真实验结果表明,Hping3能实时检测出被攻击的UAV,且其他正常UAV切换为DDPG算法后能稳定避开障碍物,从而保障集群安全;在DoS攻击期间,采用切换避障策略的成功率为72.50%,远高于传统APF的31.25%,且切换策略逐渐收敛,表现出较好的稳定性;训练后的DDPG避障策略具有一定泛化性,当环境中出现1~2个未知障碍物时仍能稳定完成任务。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 基于双向交叉注意力的多尺度特征融合情感分类
    梁一鸣, 范菁, 柴汶泽
    《计算机应用》唯一官方网站    2025, 45 (9): 2773-2782.   DOI: 10.11772/j.issn.1001-9081.2024081193
    摘要49)   HTML2)    PDF (1855KB)(331)    收藏

    针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机制的情感分类模型M-BCA(Multi-scale BERT features with Bidirectional Cross Attention)。首先,从BERT的低层、中层和高层分别提取多尺度特征,以捕捉句子文本的表面信息、语法信息和深层语义信息;其次,利用三通道门控循环单元(GRU)进一步提取深层语义特征,从而增强模型对文本的理解能力;最后,为促进不同尺度特征之间的交互与学习,引入双向交叉注意力机制,从而增强多尺度特征之间的相互作用。此外,针对不平衡数据问题,设计数据增强策略,并采用混合损失函数优化模型对少数类别样本的学习。实验结果表明,在细粒度情感分类任务中,M-BCA表现优异。M-BCA在处理分布不平衡的多分类情感数据集时,它的性能显著优于大多数基线模型。此外,M-BCA在少数类别样本的分类任务中表现突出,尤其是在NLPCC 2014与Online_Shopping_10_Cats数据集上,M-BCA的少数类别的Macro-Recall领先其他所有对比模型。可见,该模型在细粒度情感分类任务中取得了显著的性能提升,并适用于处理不平衡数据集。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 基于Tsransformer-GCN的源代码漏洞检测方法
    梁辰, 王奕森, 魏强, 杜江
    《计算机应用》唯一官方网站    2025, 45 (7): 2296-2303.   DOI: 10.11772/j.issn.1001-9081.2024070998
    摘要103)   HTML2)    PDF (2132KB)(608)    收藏

    针对现有的基于深度学习的源代码漏洞检测方法存在目标代码语法和语义缺失严重以及神经网络模型对目标代码图点(边)权重分配不合理等问题,提出一种基于代码属性图(CPG)与自适应图卷积网络(AT-GCN)的源代码漏洞检测方法VulATGCN。该方法使用CPG对源代码进行表征,结合CodeBERT进行节点向量化,并通过图中心性分析提取深层次结构特征,从而多维度地捕捉代码的语法和语义信息。之后,结合Transformer自注意力机制善于捕捉长距离依赖关系和图卷积网络(GCN)善于捕捉局部特征的优势设计AT-GCN模型,从而实现对不同重要性区域特征的融合学习和精确提取。在真实漏洞数据集Big-Vul和SARD上的实验结果表明,所提方法VulATGCN的平均F1分数达到了82.9%,相较于VulSniper、VulMPFF和MGVD等基于深度学习的漏洞检测方法提高了10.4%~132.9%,平均提高约52.9%。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 基于语义增强模式链接的Text-to-SQL模型
    吴相岚, 肖洋, 刘梦莹, 刘明铭
    《计算机应用》唯一官方网站    2024, 44 (9): 2689-2695.   DOI: 10.11772/j.issn.1001-9081.2023091360
    摘要321)   HTML25)    PDF (739KB)(1367)    收藏

    为优化基于异构图编码器的Text-to-SQL生成效果,提出SELSQL模型。首先,模型采用端到端的学习框架,使用双曲空间下的庞加莱距离度量替代欧氏距离度量,以此优化使用探针技术从预训练语言模型中构建的语义增强的模式链接图;其次,利用K头加权的余弦相似度以及图正则化方法学习相似度度量图使得初始模式链接图在训练中迭代优化;最后,使用改良的关系图注意力网络(RGAT)图编码器以及多头注意力机制对两个模块的联合语义模式链接图进行编码,并且使用基于语法的神经语义解码器和预定义的结构化语言进行结构化查询语言(SQL)语句解码。在Spider数据集上的实验结果表明,使用ELECTRA-large预训练模型时,SELSQL模型比最佳基线模型的准确率提升了2.5个百分点,对于复杂SQL语句生成的提升效果很大。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 面向深度分类模型超参数自优化的代理模型
    张睿, 潘俊铭, 白晓露, 胡静, 张荣国, 张鹏云
    《计算机应用》唯一官方网站    2024, 44 (10): 3021-3031.   DOI: 10.11772/j.issn.1001-9081.2023091313
    摘要258)   HTML8)    PDF (2779KB)(849)    收藏

    为进一步提高深度分类模型超参数多目标自适应寻优效率,提出一种筛选式增强Dropout代理(FEDA)模型。首先,构建点对互信息约束增强的双通道Dropout神经网络,增强对高维超参数深度分类模型的拟合,并结合聚集选解策略加速候选解集的选取;其次,设计一种结合模型管理策略的算法FEDA-ARMOEA(FEDA model-A novel preference-based dominance Relation for Multi-Objective Evolutionary Algorithm)均衡种群个体的收敛性和多样性,协助FEDA提高深度分类模型训练及超参数自优化效率。将FEDA-ARMOEA与EDN-ARMOEA(Efficient Dropout neural Network-assisted AR-MOEA)、HeE-MOEA(Heterogeneous Ensemble-based infill criterion for Multi-Objective Evolutionary Algorithm)等算法进行对比实验,实验结果表明,FEDA-ARMOEA在56组测试问题中的41组上表现较好。在工业应用焊缝数据集MTF和公共数据集CIFAR-10上实验,FEDA-ARMOEA优化的分类模型的精度分别达到96.16%和93.79%,训练时间相较于对比算法分别降低6.94%~47.04%和4.44%~39.07%,均优于对比算法,验证了所提算法的有效性和泛化性。

    图表 | 参考文献 | 相关文章 | 多维度评价
2025年 45卷 9期
刊出日期: 2025-09-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会