全文下载排行

    一年内发表文章 | 两年内 | 三年内 | 全部 | 最近1个月下载排行 | 最近1年下载排行

    当前位置: 最近1个月下载排行
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 基于深度学习的网络入侵检测系统综述
    邓淼磊, 阚雨培, 孙川川, 徐海航, 樊少珺, 周鑫
    《计算机应用》唯一官方网站    2025, 45 (2): 453-466.   DOI: 10.11772/j.issn.1001-9081.2024020229
    摘要512)   HTML45)    PDF (1427KB)(2678)    收藏

    入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新研究进展。首先,简要概述当前几种IDS;其次,介绍基于深度学习的IDS中常用的数据集和评价指标;然后,总结网络IDS中常用的深度学习模型及其应用场景;最后,探讨当前相关研究面临的问题,并提出未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 大语言模型综述与展望
    秦小林, 古徐, 李弟诚, 徐海文
    《计算机应用》唯一官方网站    2025, 45 (3): 685-696.   DOI: 10.11772/j.issn.1001-9081.2025010128
    摘要1173)   HTML93)    PDF (2035KB)(2317)    收藏

    大语言模型(LLM)是由具有大量参数(通常数十亿个权重或更多)的人工神经网络组成的一类语言模型,使用自监督学习或半监督学习对大量未标记文本进行训练,是当前生成式人工智能(AI)技术的核心。与传统语言模型相比,LLM通过大量的算力、参数和数据支持,展现出更强的语言理解与生成能力,广泛应用于机器翻译、问答系统、对话生成等众多任务中并表现卓越。现有的综述大多侧重于LLM的理论架构与训练方法,对LLM的产业级应用实践及技术生态演进的系统性探讨仍显不足。因此,在介绍LLM的基础架构、训练技术及发展历程的基础上,分析当前通用的LLM关键技术和以LLM为底座的先进融合技术。通过归纳总结现有研究,进一步阐述LLM在实际应用中面临的挑战,包括数据偏差、模型幻觉和计算资源消耗等问题,并对LLM的持续发展趋势进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 融合大语言模型和提示学习的数字孪生水利知识图谱构建
    杨燕, 叶枫, 许栋, 张雪洁, 徐津
    《计算机应用》唯一官方网站    2025, 45 (3): 785-793.   DOI: 10.11772/j.issn.1001-9081.2024050570
    摘要260)   HTML9)    PDF (2950KB)(1341)    收藏

    构建数字孪生水利建设知识图谱挖掘水利建设对象之间的潜在关系能够帮助相关人员优化水利建设设计方案和决策。针对数字孪生水利建设的学科交叉和知识结构复杂的特性,以及通用知识抽取模型缺乏对水利领域知识的学习和知识抽取精度不足等问题,为提高知识抽取的精度,提出一种基于大语言模型的数字孪生水利建设知识抽取方法(DTKE-LLM)。该方法通过LangChain部署本地大语言模型(LLM)并集成数字孪生水利领域知识,基于提示学习微调LLM,LLM利用语义理解和生成能力抽取知识,同时,设计异源实体对齐策略优化实体抽取结果。在水利领域语料库上进行对比实验和消融实验,以验证所提方法的有效性。对比实验结果表明,相较于基于深度学习的双向长短期记忆条件随机场(BiLSTM-CRF)命名实体识别模型和通用信息抽取模型UIE(Universal Information Extraction),DTKE-LLM的精确率更优;消融实验结果表明,相较于ChatGLM2-6B(Chat Generative Language Model 2.6 Billion),DTKE-LLM的实体抽取和关系抽取F1值分别提高了5.5和3.2个百分点。可见,该方法在保障知识图谱构建质量的基础上,实现了数字孪生水利建设知识图谱的构建。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 加密数字货币监管技术研究综述
    王佳鑫, 颜嘉麒, 毛谦昂
    《计算机应用》唯一官方网站    2023, 43 (10): 2983-2995.   DOI: 10.11772/j.issn.1001-9081.2022111694
    摘要618)   HTML67)    PDF (911KB)(2718)    收藏

    借助区块链等新兴技术,加密数字货币呈现去中心化、自治化、跨界化的特点。研究加密数字货币的监管技术不仅有助于打击基于加密数字货币的犯罪活动,而且可以为区块链技术在其他领域的扩展提供可行的监管方案。首先,基于加密数字货币的应用特点,定义并阐述了加密数字货币产生、兑换和流通(GEC)周期理论;其次,详细分析了国内外频发的基于加密数字货币的犯罪事件,并重点介绍了加密数字货币在每个周期中的安全监管技术的研究现状;最后,总结了加密数字货币的监管平台生态体系以及监管技术现在面临的挑战,并展望了未来加密数字货币监管的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 基于多尺度感知的多维空间融合水下图像增强算法
    郭伟, 王曼婷, 曲海成
    《计算机应用》唯一官方网站    2026, 46 (1): 224-232.   DOI: 10.11772/j.issn.1001-9081.2025010139
    摘要86)   HTML1)    PDF (3529KB)(684)    收藏

    针对深海拍摄会导致水下图像色彩偏移、对比度过低和结构不清晰等问题,提出一种基于多尺度感知的多维空间融合水下图像增强算法,结合空间、通道和三维特征将图像信息并行传入多维特征提取网络和编码器中。首先,在多维特征提取网络中引入多尺度特征精炼模块进一步处理提取到的特征信息,使网络更准确地学习不同尺度的信息;然后,在编码器中引入多维色彩增强模块,增强图像细节和色彩;最后,设计自适应增强网络来进一步处理特征信息并融合多级信息,再通过解码器得到最终的增强图像。在公开数据集上的实验结果表明,所提算法表现优异,它的峰值信噪比(PSNR)和结构相似性(SSIM)最高分别达到24.865 1 dB和0.895 4,比混合融合方法(HFM)分别提升了1.580 6 dB和0.039 8;水下色彩质量评价(UCIQE)和水下图像质量测量(UIQM)最高分别达到0.593 1和3.102 8,比HFM分别提升了0.038 4和0.151 4。可见,所提算法能有效提升水下视觉效果。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. ScholatGPT:面向学术社交网络的大语言模型及智能应用
    袁成哲, 陈国华, 李丁丁, 朱源, 林荣华, 钟昊, 汤庸
    《计算机应用》唯一官方网站    2025, 45 (3): 755-764.   DOI: 10.11772/j.issn.1001-9081.2024101477
    摘要471)   HTML28)    PDF (2602KB)(1474)    收藏

    针对现有大语言模型(LLM)在跨领域知识处理、实时学术信息更新及输出质量保证方面的局限,提出基于学术社交网络(ASN)的学者LLM——ScholatGPT。ScholatGPT结合知识图谱增强生成(KGAG)与检索增强生成(RAG),以提升精准语义检索与动态知识更新的能力,并通过微调优化以强化学术文本的生成质量。首先,基于学者网(SCHOLAT)关系数据构建学者知识图谱,并利用LLM进行语义增强;其次,提出KGAG检索模型,结合RAG实现多路混合检索,增强LLM的精准检索能力;最后,利用微调技术优化模型,使它在各学术领域的生成质量得到提升。实验结果表明,ScholatGPT在学术问答任务中的精确率达83.2%,相较于GPT-4o和AMiner AI提升了69.4和11.5个百分点,在学者画像、代表作识别和研究领域分类等任务上均表现优异。在回答相关性、连贯性和可读性方面,ScholatGPT取得了稳定且具有竞争力的表现,在专业性与可读性之间实现了较好的平衡。此外,基于ScholatGPT开发的学者智库和学术信息推荐系统等智能应用有效提升了学术信息获取的效率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 大语言模型的偏见挑战:识别、评估与去除
    徐月梅, 叶宇齐, 何雪怡
    《计算机应用》唯一官方网站    2025, 45 (3): 697-708.   DOI: 10.11772/j.issn.1001-9081.2024091350
    摘要356)   HTML16)    PDF (2112KB)(603)    收藏

    针对大语言模型(LLM)输出内容存在偏见而导致LLM不安全和不可控的问题,从偏见识别、偏见评估和偏见去除3个角度出发深入梳理和分析现有LLM偏见的研究现状、技术与局限。首先,概述LLM的三大关键技术,从中分析LLM不可避免存在内隐偏见(Intrinsic Bias)的根本原因;其次,总结现有LLM存在的语言偏见、人口偏见和评估偏见三类偏见类型,并分析这些偏见的特点和原因;再次,系统性回顾现有LLM偏见的评估基准,并探讨这些通用型评估基准、特定语言评估基准以及特定任务评估基准的优点及局限;最后,从模型去偏和数据去偏2个角度出发深入分析现有LLM去偏技术,并指出它们的改进方向,同时,分析指出LLM偏见研究的3个方向:偏见的多文化属性评估、轻量级的偏见去除技术以及偏见可解释性的增强。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 基于集成学习的雷达自动目标识别综述
    洪梓榕, 包广清
    《计算机应用》唯一官方网站    2025, 45 (2): 371-382.   DOI: 10.11772/j.issn.1001-9081.2024020179
    摘要304)   HTML11)    PDF (1391KB)(1946)    收藏

    雷达自动目标识别(RATR)在军事和民用领域中都有广泛的应用。由于集成学习通过集成已有的机器学习模型改善模型分类性能,具有较好的鲁棒性,因此被越来越多地应用于雷达目标检测与识别领域。系统梳理和提炼现有相关文献对集成学习在RATR中的研究进展。首先,介绍集成学习的概念、框架与发展历程,将集成学习与传统机器学习、深度学习方法对比,并总结集成学习理论和常见集成学习方法的优势、不足及研究的主要聚焦点;其次,简述RATR的概念;接着,重点阐述集成学习在不同雷达图像分类特征中的应用,详细讨论基于合成孔径雷达(SAR)和高分辨距离像(HRRP)的目标检测与识别方法,并总结这些方法的研究进展和应用成效;最后,讨论RATR以及集成学习所面临的挑战,并对集成学习在雷达目标识别领域的应用进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于深度学习的事件因果关系抽取综述
    王朱君, 王石, 李雪晴, 朱俊武
    《计算机应用》唯一官方网站    2021, 41 (5): 1247-1255.   DOI: 10.11772/j.issn.1001-9081.2020071080
    摘要3216)      PDF (1460KB)(5111)    收藏
    因果关系抽取是自然语言处理(NLP)中的一种关系抽取任务,它通过构造事件图来挖掘文本中具有因果关系的事件对,已经在金融、安全、生物等领域的应用中发挥重要作用。首先,介绍了事件抽取和因果关系等概念,并介绍了因果关系抽取主流方法的演变和常用数据集;然后,列举了当前主流的因果关系抽取模型,并且在分别对基于流水线的模型和联合抽取模型进行详细分析的基础上,对比了各种方法和模型的优缺点;此外,对各模型的实验性能及相关实验数据进行了归纳分析;最后,给出了当前的因果关系抽取的研究难点和未来的重点研究方向。
    参考文献 | 相关文章 | 多维度评价
    10. 概率驱动的动态多目标多智能体协同调度进化优化
    刘晓芳, 张军
    《计算机应用》唯一官方网站    2024, 44 (5): 1372-1377.   DOI: 10.11772/j.issn.1001-9081.2023121865
    摘要419)   HTML19)    PDF (1353KB)(1669)    收藏

    在多智能体系统中,协作任务往往动态变化,且存在多个冲突的优化目标,因此动态多目标多智能体协同调度问题已经成为亟须解决的关键问题之一。针对动态环境下多智能体协同调度需求,提出了概率驱动的动态预测策略,旨在有效利用历史环境概率分布,预测决策解在新环境的概率分布,从而生成新的多智能体调度方案,实现调度算法在动态环境下的快速响应。具体来讲,设计了基于元素的概率分布表达,以表示解的构成元素在动态环境的适应性,并根据优化算法迭代最优解逐步更新概率分布以趋近实际分布;构建了基于融合的概率分布预测机制,考虑到环境变化的连续性和相关性,当环境变化时,通过融合历史概率分布预测新环境的概率分布,为新环境优化提供先验知识;提出了基于启发式的新解采样机制,结合概率分布和启发式信息,生成解方案以更新过时种群。将概率驱动的动态预测策略嵌入新型的多目标进化算法,获得概率驱动的动态多目标进化算法。在10个动态多目标多智能体协同调度问题实例上,实验结果表明,所提算法在解最优性和多样性上显著优于已有多目标进化算法,所提的概率驱动的动态预测策略能够提高多目标进化算法对动态环境的适应能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 基于作者偏好的学术投稿刊物推荐算法
    董永峰, 屈向前, 李林昊, 董瑶
    《计算机应用》唯一官方网站    2022, 42 (1): 50-56.   DOI: 10.11772/j.issn.1001-9081.2021010185
    摘要629)   HTML39)    PDF (605KB)(1622)    收藏

    针对投稿刊物推荐算法总是单独考虑文本主题或者作者历史发刊记录,导致投稿刊物推荐结果准确率低的问题,提出了一种基于作者偏好的学术刊物投稿推荐算法。该算法不仅协调使用了文本主题和作者历史发刊记录,还挖掘了投稿刊物的学术焦点与时间的潜在联系。首先,使用潜在狄利克雷(LDA)主题模型对文章标题进行主题提取;其次,建立主题-刊物和时间-刊物的模型图,并采用大规模信息网络嵌入(LINE)模型学习异构图节点的嵌入;最后,融合作者的主题偏好和历史发刊记录来计算刊物的综合得分,并据此对投稿作者进行投稿刊物推荐。在两个公开数据集DBLP和PubMed上的实验结果表明,相比奇异值分解(SVD)、DeepWalk、非负矩阵分解(NMF)等6个算法,所提出的算法在不同推荐的投稿刊物列表长度的情况下的召回率均为最优,并且在需要从论文和知识库中获取更少信息的同时,保持了较高的准确性,能有效提高投稿刊物推荐算法的鲁棒性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 基于Swin Transformer的生成对抗网络水下图像增强模型
    李慧, 贾炳志, 王晨曦, 董子宇, 李纪龙, 仲兆满, 陈艳艳
    《计算机应用》唯一官方网站    2025, 45 (5): 1439-1446.   DOI: 10.11772/j.issn.1001-9081.2024050730
    摘要218)   HTML5)    PDF (3642KB)(624)    收藏

    针对水下图像对比度低、噪声大和存在色彩偏差等问题,以生成对抗网络(GAN)为核心框架,提出一种基于Swin Transformer的生成对抗网络水下图像增强模型SwinGAN(GAN based on Swin Transformer)。首先,生成网络部分遵循编码器-瓶颈层-解码器的结构设计,在瓶颈层将输入的特征图分割成多个不重叠的局部窗口;其次,引入双路窗口多头自注意力机制(DWMSA),在加强捕获全局信息和长距离依赖关系的同时,增强局部注意力;最后,在解码器中将下采样后的特征图经过多个上采样窗口重新组合成原始尺寸的特征图,判别网络则采用马尔可夫判别器。实验结果表明,与URSCT-SESR模型相比,在UFO-120数据集上,SwinGAN的峰值信噪比(PSNR)提升了0.837 2 dB,结构相似度(SSIM)提高了0.003 6;在EUVP-515数据集上,SwinGAN的PSNR提升了0.843 9 dB,SSIM提高了0.005 1,水下图像质量评价指标(UIQM)增加了0.112 4,水下彩色图像质量评估指标(UCIQE)略有上升,增加了0.001 0。可见,SwinGAN的主观评价以及客观评价指标都表现出色,在改善水下图像的色彩偏差问题上取得了不错的效果。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于深度学习的多模态医学图像分割综述
    窦猛, 陈哲彬, 王辛, 周继陶, 姚宇
    《计算机应用》唯一官方网站    2023, 43 (11): 3385-3395.   DOI: 10.11772/j.issn.1001-9081.2022101636
    摘要2093)   HTML97)    PDF (3904KB)(3018)    收藏

    多模态医学图像可以为临床医生提供靶区(如肿瘤、器官或组织)的丰富信息。然而,由于多模态图像之间相互独立且仅有互补性,如何有效融合多模态图像并进行分割仍是亟待解决的问题。传统的图像融合方法难以有效解决此问题,因此基于深度学习的多模态医学图像分割算法得到了广泛的研究。从原理、技术、问题及展望等方面对基于深度学习的多模态医学图像分割任务进行了综述。首先,介绍了深度学习与多模态医学图像分割的一般理论,包括深度学习与卷积神经网络(CNN)的基本原理与发展历程,以及多模态医学图像分割任务的重要性;其次,介绍了多模态医学图像分割的关键概念,包括数据维度、预处理、数据增强、损失函数以及后处理等;接着,对基于不同融合策略的多模态分割网络进行综述,对不同方式的融合策略进行分析;最后,对医学图像分割过程中常见的几个问题进行探讨,并对今后研究作了总结与展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 在线教育学习者知识追踪综述
    赵雅娟, 孟繁军, 徐行健
    《计算机应用》唯一官方网站    2024, 44 (6): 1683-1698.   DOI: 10.11772/j.issn.1001-9081.2023060852
    摘要650)   HTML22)    PDF (2932KB)(5587)    收藏

    知识追踪(KT)是在线教育中一项基础且具有挑战性的任务,同时也是从学习者的学习历史中建立学习者知识状态模型的任务,可以帮助学习者更好地了解自己的知识状态,使教育者更好地了解学习者的学习情况。对在线教育学习者KT研究进行综述。首先,介绍KT的主要任务和发展历程;其次,从传统KT模型和深度学习KT模型两个方面展开叙述;再次,归纳总结相关数据集和评价指标,并汇总KT的相关应用;最后,总结KT现状,讨论它们的不足和未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 基于Transformer的视觉目标跟踪方法综述
    孙子文, 钱立志, 杨传栋, 高一博, 陆庆阳, 袁广林
    《计算机应用》唯一官方网站    2024, 44 (5): 1644-1654.   DOI: 10.11772/j.issn.1001-9081.2023060796
    摘要769)   HTML22)    PDF (1615KB)(1951)    收藏

    视觉目标跟踪是计算机视觉中的重要任务之一,为实现高性能的目标跟踪,近年来提出了大量的目标跟踪方法,其中基于Transformer的目标跟踪方法由于具有全局建模和联系上下文的能力,是目前视觉目标跟踪领域研究的热点。首先,根据网络结构的不同对基于Transformer的视觉目标跟踪方法进行分类,概述相关原理和模型改进的关键技术,总结不同网络结构的优缺点;其次,对这类方法在公开数据集上的实验结果进行对比,分析网络结构对性能的影响,其中MixViT-L(ConvMAE)在LaSOT和TrackingNet上跟踪成功率分别达到了73.3%和86.1%,说明基于纯Transformer两段式架构的目标跟踪方法具有更优的性能和更广的发展前景;最后,对方法当前存在的网络结构复杂、参数量大、训练要求高和边缘设备使用难度大等不足进行总结,并对今后的研究重点进行展望,通过与模型压缩、自监督学习以及Transformer可解释性分析相结合,可为基于Transformer的视觉目标跟踪提出更多可行的解决方案。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 融合图注意力的复杂时序知识图谱推理问答模型
    蒋汶娟, 过弋, 付娇娇
    《计算机应用》唯一官方网站    2024, 44 (10): 3047-3057.   DOI: 10.11772/j.issn.1001-9081.2023101391
    摘要314)   HTML9)    PDF (2228KB)(466)    收藏

    在时序知识图谱问答(TKGQA)任务中,针对模型难以捕获并利用问句中隐含的时间信息增强模型的复杂问题推理能力的问题,提出一种融合图注意力的时序知识图谱推理问答(GACTR)模型。所提模型采用四元组形式的时序知识库(KB)进行预训练,同时引入图注意力网络(GAT)以有效捕获问句中隐式时间信息;通过与RoBERTa(Robustly optimized Bidirectional Encoder Representations from Transformers pretraining approach)模型训练的关系表示进行集成,进一步增强问句的时序关系表示;将该表示与预训练的时序知识图谱(TKG)嵌入相结合,以获得最高评分的实体或时间戳作为答案预测结果。在最大的基准数据集CRONQUESTIONS上的实验结果显示,GACTR模型在时序推理模式下能更好地捕获隐含时间信息,有效提升模型的复杂推理能力。与基线模型CRONKGQA(Knowledge Graph Question Answering on CRONQUESTIONS)相比,GACTR模型在处理复杂问题类型和时间答案类型上的Hits@1结果分别提升了34.6、13.2个百分点;与TempoQR(Temporal Question Reasoning)模型相比,分别提升了8.3、2.8个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 基于注意力机制和多粒度特征融合的跨视角匹配模型
    蔡美玉, 朱润哲, 吴飞, 张开昱, 李家乐
    《计算机应用》唯一官方网站    2024, 44 (3): 901-908.   DOI: 10.11772/j.issn.1001-9081.2023040412
    摘要342)   HTML14)    PDF (3816KB)(1466)    收藏

    跨视角景象匹配是指从不同平台(如无人机、卫星等)发现同一地理目标的图像。然而,不同图像平台会导致无人机(UAV)定位和导航任务精度较低,现有方法通常只关注图像的单一维度,忽略了图像的多维特征。针对上述问题,提出一种全局注意力和多粒度特征融合(GAMF)深度神经网络以改进特征表示,提高特征可区分度。首先,GAMF模型结合无人机视角和卫星视角的图像,在统一的网络架构下延展为3个分支,从3个维度提取图像的空间位置、通道和局部特征;然后,建立空间全局关系注意力模块(SGAM)和通道全局注意力模块(CGAM),引入空间全局关系机制和通道注意力机制捕获全局信息,从而更好地进行注意力学习;其次,为了融合局部感知特征,引入局部划分策略,以更好地增强模型提取细粒度特征的能力;最后,联合3个维度的特征作为最后的特征对模型训练。在公开数据集University-1652上的实验结果表明,GAMF模型在无人机视觉定位任务上的平均精准率(AP)达到了87.41%,在无人机视觉导航任务中召回率(R@1)达到了90.30%。验证了GAMF模型能够有效聚合图像的多维特征,提高无人机定位和导航任务的准确性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 面向联邦学习的后门攻击与防御综述
    陈学斌, 屈昌盛
    《计算机应用》唯一官方网站    2024, 44 (11): 3459-3469.   DOI: 10.11772/j.issn.1001-9081.2023111653
    摘要393)   HTML1)    PDF (785KB)(932)    收藏

    联邦学习(FL)作为一种分布式的机器学习方法,允许不同参与方利用各自的本地数据集合作训练一个机器模型,因此能够解决数据孤岛与用户隐私保护问题。但是,FL本身的分布式特性使它更容易受到后门攻击,这为它的实际应用带来了更大的挑战。因此,深入了解FL环境下的后门攻击与防御方法对该领域的发展至关重要。首先,介绍了FL的定义、流程和分类以及后门攻击的定义;其次,从FL环境下的后门攻击和后门防御方案这两个方面进行了详细介绍与分析,并对后门攻击和后门防御方法进行对比;最后,对FL环境下的后门攻击与防御方法的发展进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 多模态知识图谱表示学习综述
    王春雷, 王肖, 刘凯
    《计算机应用》唯一官方网站    2024, 44 (1): 1-15.   DOI: 10.11772/j.issn.1001-9081.2023050583
    摘要1503)   HTML119)    PDF (3449KB)(6723)    收藏

    在综合对比传统知识图谱表示学习模型优缺点以及适用任务后,发现传统的单一模态知识图谱无法很好地表示知识。因此,如何利用文本、图片、视频、音频等多模态数据进行知识图谱表示学习成为一个重要的研究方向。同时,详细分析了常用的多模态知识图谱数据集,为相关研究人员提供数据支持。在此基础上,进一步讨论了文本、图片、视频、音频等多模态融合下的知识图谱表示学习模型,并对其中各种模型进行了总结和比较。最后,总结了多模态知识图谱表示学习如何改善经典应用,包括知识图谱补全、问答系统、多模态生成和推荐系统在实际应用中的效果,并对未来的研究工作进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 可解释的深度知识追踪方法综述
    索晋贤, 张丽萍, 闫盛, 王东奇, 张雅雯
    《计算机应用》唯一官方网站    2025, 45 (7): 2043-2055.   DOI: 10.11772/j.issn.1001-9081.2024070970
    摘要370)   HTML31)    PDF (2726KB)(1357)    收藏

    知识追踪(KT)是一种认知诊断方法,旨在通过学习者的历史答题记录,模拟学习者对于学习知识的掌握程度,最终预测学习者未来的答题情况。目前基于深度神经网络模型的知识追踪技术以强大的特征提取能力和优越的预测能力成为知识追踪领域研究的热点;然而,基于深度学习的知识追踪模型通常缺乏较好的可解释性。清晰的可解释性不仅可以让学习者和教师充分理解知识追踪模型的推理过程和预测结果,从而为下一步学习制定符合当前知识状态的学习计划,还能够提升学习者和教师对知识追踪模型的信任程度。因此,对可解释的深度知识追踪(DKT)方法进行综述。首先,介绍知识追踪的发展历程,并介绍可解释性的定义和必要性;其次,从特征提取和模型内部提升两方面,对解决DKT模型缺乏可解释性而提出的改进方法进行总结和梳理;再次,介绍现有的可供研究者使用的相关公开数据集,并分析数据集内的数据特征对可解释性的影响,从而探讨如何从模型性能和可解释性两个方面对知识追踪模型进行评价,并整理DKT模型在不同数据集上的性能表现;最后,对DKT模型目前存在的问题提出一些未来可能的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 融合路径与子图特征的知识图谱多跳推理模型
    李瑞, 李贯峰, 胡德洲, 高文馨
    《计算机应用》唯一官方网站    2025, 45 (1): 32-39.   DOI: 10.11772/j.issn.1001-9081.2024010050
    摘要417)   HTML2)    PDF (1294KB)(655)    收藏

    针对知识推理模型在捕获实体之间的复杂语义特征方面难以捕捉多层次语义信息,同时未考虑单一路径的可解释性对正确答案的影响权重不同等问题,提出一种融合路径与子图特征的知识图谱(KG)多跳推理模型PS-HAM (Hierarchical Attention Model fusing Path-Subgraph features)。PS-HAM将实体邻域信息与连接路径信息进行融合,并针对不同路径探索多粒度的特征。首先,使用路径级特征提取模块提取每个实体对之间的连接路径,并采用分层注意力机制捕获不同粒度的信息,且将这些信息作为路径级的表示;其次,使用子图特征提取模块通过关系图卷积网络(RGCN)聚合实体的邻域信息;最后,使用路径-子图特征融合模块对路径级与子图级特征向量进行融合,以实现融合推理。在两个公开数据集上进行实验的结果表明,PS-HAM在指标平均倒数秩(MRR)和Hit@kk=1,3,10)上的性能均存在有效提升。对于指标MRR,与MemoryPath模型相比,PS-HAM在FB15k-237和WN18RR数据集上分别提升了1.5和1.2个百分点。同时,对子图跳数进行的参数验证的结果表明,PS-HAM在两个数据集上都在子图跳数在3时推理效果达到最佳。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 强化学习和矩阵补全引导的多目标试卷生成
    邢长征, 梁浚锋, 金海波, 徐佳玉, 乌海荣
    《计算机应用》唯一官方网站    2025, 45 (1): 48-58.   DOI: 10.11772/j.issn.1001-9081.2024010010
    摘要236)   HTML4)    PDF (3169KB)(803)    收藏

    针对现有的试卷生成技术存在过多关注生成试卷的难易程度,而忽略了其他相关目标,例如质量、分数分布和技能覆盖范围的问题,提出一种强化学习和矩阵补全引导的多目标试卷生成方法,以优化试卷生成领域的特定目标。首先,运用深度知识追踪方法对学生之间的交互信息和响应日志进行建模以获取学生群体的技能熟练程度;其次,运用矩阵分解和矩阵补全方法对学生未做的习题进行得分预测;最后,基于多目标试卷生成策略,为提升Q网络的更新效率,设计一个Exam Q-Network函数逼近器以自动地选择合适的问题集来更新试卷组成。实验结果表明,相较于DEGA (Diseased-Enhanced Genetic Algorithm)、SSA-GA (Sparrow Search Algorithm - Genetic Algorithm)等模型,在试卷难度、合理性、准确性这3个指标上验证了所提模型在解决试卷生成场景的多重困境方面上效果显著。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 基于语音和文本的双模态情感识别综述
    韩令敏, 陈仙红, 熊文梦
    《计算机应用》唯一官方网站    2025, 45 (4): 1025-1034.   DOI: 10.11772/j.issn.1001-9081.2024030319
    摘要672)   HTML68)    PDF (1625KB)(2119)    收藏

    情感识别是一种让计算机识别和理解人类情感的技术,在众多领域都起着重要的作用,也是人工智能领域重要的发展方向。因此,梳理与归纳基于语音和文本的双模态情感识别的研究现状:首先,分类阐述情感表示空间;其次,按照情感数据库的情感表示空间对这些数据库进行分类,并总结常见的多模态情感数据库;再次,介绍基于语音和文本的双模态情感识别方法,包括特征提取、模态融合和决策分类,重点介绍模态融合方法并将这些方法分为特征级融合、决策级融合、模型级融合和多层次融合这4类;此外,比较和分析一系列语音和文本双模态情感识别方法的结果;最后,介绍情感识别的应用场景、面临的挑战与未来的发展方向。以上旨在对多模态情感识别,尤其是对基于语音和文本的双模态情感识别的相关工作进行分析与总结,并为情感识别提供有价值的参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 区块链在供应链应用中的研究现状与挑战
    葛丽娜, 徐婧雅, 王哲, 张桂芬, 颜亮, 胡政
    《计算机应用》唯一官方网站    2023, 43 (11): 3315-3326.   DOI: 10.11772/j.issn.1001-9081.2022111758
    摘要609)      PDF (2371KB)(1210)    收藏

    供应链在发展过程中面临许多挑战,包括如何保证产品溯源过程中信息的真实可靠性以及溯源系统的安全性、物流运输过程中产品的安全性,以及中小企业融资过程中的信任管理等。区块链的去中心化、不可篡改、可追溯性等特点为供应链管理提供了高效的解决办法,但在实际实施过程中存在一些技术挑战。为研究区块链技术在供应链中的应用,对一些典型的应用进行讨论与分析。首先简要介绍了供应链的概念及目前面临的挑战;其次阐述了区块链在信息流、物流以及资金流这三个供应链领域中面临的问题,并对相关解决方案作了对比分析;最后对区块链在供应链实际应用中面临的技术挑战加以总结,对未来的应用进行展望。

    参考文献 | 相关文章 | 多维度评价
    25. 基于加权犹豫模糊集的实验设计与分阶段PSO-Kriging建模
    高培根, 锁斌
    《计算机应用》唯一官方网站    2024, 44 (7): 2144-2150.   DOI: 10.11772/j.issn.1001-9081.2023070982
    摘要328)   HTML8)    PDF (1631KB)(1176)    收藏

    过高的实验成本导致输出为非线性多极值的复杂系统获得的实验样本点少,建立的代理模型精度较低。针对此现状提出一种基于先验信息的实验设计与建模方法。该方法利用先验信息划分实验设计域,并根据波动性指标构建各区域的加权犹豫模糊集,增加评价结果的合理性;结合各区域的波动性与范围大小决定实验样本点个数,由汉默斯里序列采样获取样本点;再将分阶段搜索粒子群算法与Kriging方法结合,提高代理模型的计算精度。以模拟平面桁架结构的损伤模型验证所提方法的有效性。实验结果表明,与汉默斯里序列采样、拉丁超立方设计建立的模型相比,所提方法建立的模型拟合优度平均提升0.84%和4.94%,均方根误差平均降低31.02%和57.18%。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 面向水声通信网络的异常攻击检测
    王地欣, 王佳昊, 李敏, 陈浩, 胡光耀, 龚宇
    《计算机应用》唯一官方网站    2025, 45 (2): 526-533.   DOI: 10.11772/j.issn.1001-9081.2024030283
    摘要234)   HTML8)    PDF (2570KB)(507)    收藏

    近些年,水声通信网络在水下信息传输方面发挥了至关重要的作用。水下通信信道具有开放性,更易遭受干扰、欺骗和窃听等攻击,因此水声通信网络面临与传统网络不同的安全挑战。然而,传统的异常检测方法直接用于水声网络时的准确率较低,而基于机器学习的异常检测方法虽然提高了准确率,但面临数据集受限、模型可解释性较差等问题。因此,将融合注意力机制的CNN-BiLSTM用于水声网络下的异常攻击检测,并提出WCBA(underWater CNN-BiLSTM-Attention)模型。该模型通过IG-PCA(Integrated Gradient-Principal Component Analysis)特征选择算法有效降低数据集的高维度,并能充分利用多维矩阵水声通信网络流量的时空特征在复杂水声数据中识别异常攻击。实验结果表明,WCBA模型在数据集受限的情况下,相较于其他神经网络模型提供了更高的准确率,并具有较高可解释性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 基于丰度协调技术的企业ESG指标预测模型
    李严, 叶冠华, 李雅文, 梁美玉
    《计算机应用》唯一官方网站    2025, 45 (2): 670-676.   DOI: 10.11772/j.issn.1001-9081.2024030262
    摘要268)   HTML7)    PDF (1400KB)(2696)    收藏

    环境、社会及治理(ESG)指标是评估企业可持续发展的重要指标。现有的ESG评估体系存在覆盖范围狭窄、主观性强和时效性差等问题,因此,迫切需要研究能利用企业数据准确预测ESG指标的预测模型。针对企业数据中ESG关联特征存在信息丰度不一致的问题,提出一种基于丰度协调技术的企业ESG指标预测模型RCT (Richness Coordination Transformer),其中上游丰度协调模块通过自编码器协调异质丰度特征,从而提高下游模块的ESG指标预测性能。在真实数据集上的实验结果表明,与模型时间卷积网络(TCN)、长短期记忆(LSTM)网络、自注意力模型(Transformer)、极限梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)相比,RCT模型在各项预测指标上均表现最优,验证了RCT模型在预测ESG指标上的有效性和优越性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 基于Web的动态几何软件领域模型及其应用
    管皓, 秦小林, 饶永生, 曹晟
    计算机应用    2020, 40 (4): 1127-1132.   DOI: 10.11772/j.issn.1001-9081.2019091672
    摘要703)      PDF (1285KB)(1011)    收藏
    动态几何软件以其动态、直观的特点广泛应用于几何约束作图。针对数据结构缺乏对动态几何领域内可复用的抽象描述的问题,提出一种动态几何软件领域模型的设计方法。首先经过领域分析来识别并划分出最基本的上下文边界,然后通过领域模型设计得到动态几何软件核心领域模型,最后在体系结构建模过程中,在纵向与横向两个维度对动态几何软件进行解耦。实验结果表明,利用该领域模型设计方法研发的动态几何软件能正确地处理图形在临界位置退化的情形。该模型表达的领域知识同时适用于二维及三维的动态几何软件,并支持对不同设备分别设计布局与交互,实现了领域知识的高层次复用。
    参考文献 | 相关文章 | 多维度评价
    29. 基于深度强化学习的无人机集群协同作战决策方法
    赵琳, 吕科, 郭靖, 宏晨, 向贤财, 薛健, 王泳
    《计算机应用》唯一官方网站    2023, 43 (11): 3641-3646.   DOI: 10.11772/j.issn.1001-9081.2022101511
    摘要904)   HTML22)    PDF (2944KB)(2268)    收藏

    在无人机(UAV)集群攻击地面目标时,UAV集群将分为两个编队:主攻目标的打击型UAV集群和牵制敌方的辅助型UAV集群。当辅助型UAV集群选择激进进攻或保存实力这两种动作策略时,任务场景类似于公共物品博弈,此时合作者的收益小于背叛者。基于此,提出一种基于深度强化学习的UAV集群协同作战决策方法。首先,通过建立基于公共物品博弈的UAV集群作战模型,模拟智能化UAV集群在合作中个体与集体间的利益冲突问题;其次,利用多智能体深度确定性策略梯度(MADDPG)算法求解辅助UAV集群最合理的作战决策,从而以最小的损耗代价实现集群胜利。在不同数量UAV情况下进行训练并展开实验,实验结果表明,与IDQN(Independent Deep Q-Network)和ID3QN(Imitative Dueling Double Deep Q-Network)这两种算法的训练效果相比,所提算法的收敛性最好,且在4架辅助型UAV情况下胜率可达100%,在其他UAV数情况下也明显优于对比算法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 基于心率变异性分析的睡眠音乐推荐系统
    彭程, 常相茂, 仇媛
    计算机应用    2020, 40 (5): 1539-1544.   DOI: 10.11772/j.issn.1001-9081.2019111969
    摘要658)      PDF (1052KB)(1389)    收藏

    现有睡眠监测研究主要是针对睡眠质量提出非干扰式监测方法的研究,而缺乏对睡眠质量主动调节方法的研究。基于心率变异性(HRV)分析的精神状态以及睡眠分期研究主要集中在这两种信息的获取上,而这两种信息的获取需要佩戴专业医疗设备,并且这些研究缺乏对信息的应用以及调整。音乐可以作为一种解决睡眠问题的非药物类方法,但现有音乐推荐方法并未考虑个体睡眠及精神状态的差异。针对以上问题提出了一种基于移动设备的精神压力和睡眠状态的音乐推荐系统。首先,用手表采集光体积扫描计信号来提取特征并计算心率;其次,将采集的信号通过蓝牙传递给手机,手机通过这些信号评估人的精神压力以及睡眠状态来播放调整音乐;最后,根据个体每晚的入眠时间进行音乐推荐。实验结果表明,在使用睡眠音乐推荐系统后,用户睡眠总时长相较于使用前增长11.0%。

    参考文献 | 相关文章 | 多维度评价
2026年 46卷 1期
刊出日期: 2026-01-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会