1 |
ABEDI H, MAGNIER C, SHAKER G. Passenger monitoring using AI-powered radar [C]// Proceedings of the IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics. Piscataway: IEEE, 2021: 1-2.
|
2 |
ABEDI H, LUO S, MAZUMDAR V, et al. AI-powered in-vehicle passenger monitoring using low-cost mm-wave radar [J]. IEEE Access, 2022, 10: 18998-19012.
|
3 |
PIZER S M, JOHNSTON R E, ERICKSEN J P, et al. Contrast-limited adaptive histogram equalization: speed and effectiveness [C]// Proceedings of the 1st Conference on Visualization in Biomedical Computing. Piscataway: IEEE, 2021: 337-345.
|
4 |
李雷孝,孟闯,林浩,等. 基于图像增强与深度学习的安全带目标检测 [J]. 计算机工程与设计, 2023, 44(2): 417-424.
|
5 |
ABDULLAH-AL-WADUD M, KABIR M H, AKBER DEWAN M A, et al. A dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2): 593-600.
|
6 |
LAND E H, McCANN J J. Lightness and retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1): 1-11.
|
7 |
WEI C, WANG W, YANG W, et al. Deep Retinex de-composition for low-light enhancement [C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.451.
|
8 |
王杰,陈黎卿,黄莉莉,等. 基于Retinex的弱光条件下车道线识别方法[J]. 计算机与数字工程, 2019, 47(2): 451-456.
|
9 |
LI C, GUO C, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238.
|
10 |
JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
|
11 |
HAI J, XUAN Z, YANG R, et al. R2RNet: low-light image enhancement via Real-low to Real-normal Network [J]. Journal of Visual Communication and Image Representation, 2023, 90: No.103712.
|
12 |
GUO X, HU Q. Low-light image enhancement via breaking down the darkness [J]. International Journal of Computer Vision, 2023, 131(1): 48-66.
|
13 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
|
14 |
GIRSHICK R. Fast R-CNN [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
|
15 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
16 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
|
17 |
李丽,卢世博,任浩,等. 基于改进YOLOv5的复杂环境下桑树枝干识别定位方法[J]. 农业机械学报, 2024, 55(2):249-257.
|
18 |
FANG Y, WU Q, LI S, et al. Enhanced YOLOv5s-based algorithm for industrial part detection [J]. Sensors, 2024, 24(4): No.1183.
|
19 |
XU X, JIANG Y, CHEN W, et al. DAMO-YOLO: a report on real-time object detection design [EB/OL]. [2023-12-02]. .
|
20 |
XU S, WANG X, LV W, et al. PP-YOLOE: an evolved version of YOLO [EB/OL]. [2023-12-08]. .
|
21 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
|
22 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229.
|
23 |
WANG L, LIU Y, DU P, et al. Object-aware distillation pyramid for open-vocabulary object detection [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11186-11196.
|
24 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19.
|
25 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
26 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
|
27 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
|
28 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12993-13000.
|
29 |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
|
30 |
ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
|