| [1] |
HUANG S J, ZHOU Z H. Multi-label learning by exploiting label correlations locally[C]// Proceedings of the 26th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2012: 949-955.
|
| [2] |
LEI K, FU Q, YANG M, et al. Tag recommendation by text classification with attention-based capsule network[J]. Neurocomputing, 2020, 391: 65-73.
|
| [3] |
DEMSZKY D, MOVSHOVITZ-ATTIAS D, KO J, et al. GoEmotions: a dataset of fine-grained emotions[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4040-4054.
|
| [4] |
KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751.
|
| [5] |
YANG Z, EMMERT-STREIB F. Optimal performance of binary relevance CNN in targeted multi-label text classification[J]. Knowledge-Based Systems, 2024, 284: No.111286.
|
| [6] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
| [7] |
吕学强,彭郴,张乐,等. 融合BERT与标签语义注意力的文本多标签分类方法[J]. 计算机应用, 2022, 42(1): 57-63.
|
|
LYU X Q, PENG C, ZHANG L, et al. Text multi-label classification method incorporating BERT and label semantic attention[J]. Journal of Computer Applications, 2022, 42(1): 57-63.
|
| [8] |
LIU N, WANG Q, REN J. Label-embedding bi-directional attentive model for multi-label text classification[J]. Neural Processing Letters, 2021, 53(1): 375-389.
|
| [9] |
杨茜. 基于Bi-LSTM和图注意力网络的多标签文本分类算法[J]. 计算机应用与软件, 2023, 40(9): 145-150, 183
|
|
YANG Q. Multi-label text classification algorithm based on Bi-LSTM and graph attention network[J]. Computer Applications and Software, 2023, 40(9): 145-150, 183.
|
| [10] |
BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
|
| [11] |
CLARE A, KING R D. Knowledge discovery in multi-label phenotype data[C]// Principles of Data Mining and Knowledge Discovery: PKDD 2001, LNCS 2168. Berlin: Springer, 2001: 42-53.
|
| [12] |
XIAO L, HUANG X, CHEN B, et al. Label-specific document representation for multi-label text classification[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 466-475.
|
| [13] |
肖琳,陈博理,黄鑫,等. 基于标签语义注意力的多标签文本分类[J]. 软件学报, 2020, 31(4): 1079-1089.
|
|
XIAO L, CHEN B L, HUANG X, et al. Multi-label text classification method based on label semantic information[J]. Journal of Software, 2020, 31(4): 1079-1089.
|
| [14] |
DU C, CHEN Z, FENG F, et al. Explicit interaction model towards text classification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 6359-6366.
|
| [15] |
王振东,董开坤,黄俊恒,等. SemFA:基于语义特征与关联注意力的大规模多标签文本分类模型[J]. 计算机科学, 2023, 50(12): 270-278.
|
|
WANG Z D, DONG K K, HUANG J H, et al. SemFA: extreme multi-label text classification model based on semantic features and association attention[J]. Computer Science, 2023, 50(12): 270-278.
|
| [16] |
ZHENG S, ZHOU J, MENG K, et al. Label-dividing gated graph neural network for hierarchical text classification[C]// Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8.
|
| [17] |
WANG B, LIU J, CHEN S, et al. A residual dynamic graph convolutional network for multi-Label text classification[C]// Proceedings of the 2021 CCF International Conference on Natural Language Processing and Chinese Computing, LNCS 13028. Cham: Springer, 2021: 664-675.
|
| [18] |
REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3982-3992.
|
| [19] |
ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Beijing: Chinese Information Processing Society of China, 2015: 73-78.
|
| [20] |
HU Z, DONG Y, WANG K, et al. Heterogeneous graph transformer[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 2704-2710.
|
| [21] |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-12-25]..
|
| [22] |
ZAHEER M, GURUGANESH G, DUBEY A, et al. BigBird: Transformers for longer sequences[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17283-17297.
|
| [23] |
韩泓霖,单丽莉,孙承杰,等. 融合标签语义知识的价值观多标签文本分类[J]. 中文信息学报, 2023, 37(10): 64-75.
|
|
HAN H L, SHAN L L, SUN C J, et al. Multi-label text classification combining semantic knowledge of value labels[J]. Journal of Chinese Information Processing, 2023, 37(10): 64-75.
|
| [24] |
金雨澄,王清钦,高剑,等. 基于图深度学习的金融文本多标签分类算法[J]. 计算机工程, 2022, 48(4): 16-21.
|
|
JIN Y C, WANG Q Q, GAO J, et al. Multi-label financial text classification algorithm based on graph deep learning[J]. Computer Engineering, 2022, 48(4): 16-21.
|