Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1169-1175.DOI: 10.11772/j.issn.1001-9081.2022020305
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Shaochen HAO, Zizuan WEI, Yao MA, Dan YU, Yongle CHEN()
Received:
2022-03-15
Revised:
2022-05-24
Accepted:
2022-05-26
Online:
2022-09-02
Published:
2023-04-10
Contact:
Yongle CHEN
About author:
HAO Shaochen, born in 1998, M. S. candidate. His research interests include federated learning, Internet of Things (IoT) security.Supported by:
通讯作者:
陈永乐
作者简介:
郝劭辰(1998—),男,山西太原人,硕士研究生,CCF会员,主要研究方向:联邦学习、物联网(IoT)安全;基金资助:
CLC Number:
Shaochen HAO, Zizuan WEI, Yao MA, Dan YU, Yongle CHEN. Network intrusion detection model based on efficient federated learning algorithm[J]. Journal of Computer Applications, 2023, 43(4): 1169-1175.
郝劭辰, 卫孜钻, 马垚, 于丹, 陈永乐. 基于高效联邦学习算法的网络入侵检测模型[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1169-1175.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020305
标识 类型 | 标识解释 | 所含具体标识 |
---|---|---|
Normal | 正常记录 | Normal |
DoS | 拒绝服务攻击 | back、land、neptune、pod、smurf、 teardrop |
Probing | 监视和其他探测活动 | ipsweep、nmap、portsweep、satan |
R2L | 来自远程机器的非法访问 | ftp_write、guess_passwd、imap、 multihop、phf、spy、warezmaster |
U2R | 普通用户对本地超级用户 特权的非法访问 | buffer_overflow、loadmodule、 perl、rootkit |
Tab. 1 KDDCup99 dataset used in experiments
标识 类型 | 标识解释 | 所含具体标识 |
---|---|---|
Normal | 正常记录 | Normal |
DoS | 拒绝服务攻击 | back、land、neptune、pod、smurf、 teardrop |
Probing | 监视和其他探测活动 | ipsweep、nmap、portsweep、satan |
R2L | 来自远程机器的非法访问 | ftp_write、guess_passwd、imap、 multihop、phf、spy、warezmaster |
U2R | 普通用户对本地超级用户 特权的非法访问 | buffer_overflow、loadmodule、 perl、rootkit |
标识类型 | 标识数 | 占比/% | 标识类型 | 标识数 | 占比/% |
---|---|---|---|---|---|
BotNet | 2 075 | 0.18 | FTP Patator | 19 941 | 1.71 |
DDoS | 261 226 | 22.35 | HeartBleed | 9 859 | 0.84 |
Goldneye | 20 543 | 1.76 | Infiltration | 5 330 | 0.46 |
Dos Hulk | 474 656 | 40.61 | PortScan | 319 636 | 27.35 |
Slowhttp DoS | 6 786 | 0.58 | SSH Patator | 27 545 | 2.36 |
Slowloris DoS | 10 537 | 0.90 | Web Attack | 10 537 | 0.90 |
Tab. 2 CICIDS2017 dataset used in experiments
标识类型 | 标识数 | 占比/% | 标识类型 | 标识数 | 占比/% |
---|---|---|---|---|---|
BotNet | 2 075 | 0.18 | FTP Patator | 19 941 | 1.71 |
DDoS | 261 226 | 22.35 | HeartBleed | 9 859 | 0.84 |
Goldneye | 20 543 | 1.76 | Infiltration | 5 330 | 0.46 |
Dos Hulk | 474 656 | 40.61 | PortScan | 319 636 | 27.35 |
Slowhttp DoS | 6 786 | 0.58 | SSH Patator | 27 545 | 2.36 |
Slowloris DoS | 10 537 | 0.90 | Web Attack | 10 537 | 0.90 |
数据集 | 数据分布场景 | 模型 | 通信 轮数 | 准确率/% |
---|---|---|---|---|
KDDCup99 | iid | FedAvg(CNN)[ | 27 | 96.37 |
FedProx(CNN)[ | 24 | 96.48 | ||
H-E-Fed(CNN) | 26 | 96.51 | ||
non-iid | FedAvg(CNN)[ | 68 | 86.27 | |
FedProx(CNN)[ | 46 | 88.06 | ||
H-E-Fed(CNN) | 56 | 95.23 | ||
数据分布均匀 但数据量匮乏 | CNN | 32 | 72.31 | |
CICIDS2017 | iid | FedAvg(CNN)[ | 49 | 91.10 |
FedProx(CNN)[ | 39 | 87.16 | ||
H-E-Fed(CNN) | 46 | 93.25 | ||
non-iid | FedAvg(CNN)[ | 88 | 87.23 | |
FedProx(CNN)[ | 86 | 85.93 | ||
H-E-Fed(CNN) | 88 | 91.07 | ||
H-E-Fed(CNN+LSTM) | 87 | 93.21 | ||
数据分布均匀 但数据量匮乏 | CNN+LSTM[ | 83 | 89.73 |
Tab. 3 Comparison of experimental results
数据集 | 数据分布场景 | 模型 | 通信 轮数 | 准确率/% |
---|---|---|---|---|
KDDCup99 | iid | FedAvg(CNN)[ | 27 | 96.37 |
FedProx(CNN)[ | 24 | 96.48 | ||
H-E-Fed(CNN) | 26 | 96.51 | ||
non-iid | FedAvg(CNN)[ | 68 | 86.27 | |
FedProx(CNN)[ | 46 | 88.06 | ||
H-E-Fed(CNN) | 56 | 95.23 | ||
数据分布均匀 但数据量匮乏 | CNN | 32 | 72.31 | |
CICIDS2017 | iid | FedAvg(CNN)[ | 49 | 91.10 |
FedProx(CNN)[ | 39 | 87.16 | ||
H-E-Fed(CNN) | 46 | 93.25 | ||
non-iid | FedAvg(CNN)[ | 88 | 87.23 | |
FedProx(CNN)[ | 86 | 85.93 | ||
H-E-Fed(CNN) | 88 | 91.07 | ||
H-E-Fed(CNN+LSTM) | 87 | 93.21 | ||
数据分布均匀 但数据量匮乏 | CNN+LSTM[ | 83 | 89.73 |
1 | AMARAL A A, DE SOUZA MENDES L, ZARPELÃO B B, et al. Deep IP flow inspection to detect beyond network anomalies[J]. Computer Communications, 2017, 98:80-96. 10.1016/j.comcom.2016.12.007 |
2 | HINDY H, ATKINSON R, TACHTATZIS C, et al. Utilising deep learning techniques for effective zero-day attack detection[J]. Electronics, 2020, 9(10): No.1684. 10.3390/electronics9101684 |
3 | WU W F, LI R F, XIE G Q, et al. A survey of intrusion detection for in-vehicle networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3):919-933. 10.1109/tits.2019.2908074 |
4 | 李硕豪,张军. 贝叶斯网络结构学习综述[J]. 计算机应用研究, 2015, 32(3): 641-646. 10.3969/j.issn.1001-3695.2015.03.001 |
LI S H, ZHANG J. Summary of Bayesian networks structure learning[J]. Application Research of Computers, 2015, 32(3): 641-646. 10.3969/j.issn.1001-3695.2015.03.001 | |
5 | YIN C L, ZHU Y F, FEI J L, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5: 21954-21961. 10.1109/access.2017.2762418 |
6 | AL-ABASSI, KARIMIPOUR H, DEHGHANTANHA A, et al. An ensemble deep learning-based cyber-attack detection in industrial control system[J]. IEEE Access, 2020, 8: 83965-83973. 10.1109/access.2020.2992249 |
7 | HOMOLIAK I, TEKNÖS M, OCHOA M, et al. Improving network intrusion detection classifiers by non-payload-based exploit-independent obfuscations: an adversarial approach[J]. EAI Endorsed Transactions on Security and Safety, 2018, 5(17): No.e4. 10.4108/eai.10-1-2019.156245 |
8 | ANDRESINI G, APPICE A, DE ROSE L, et al. GAN augmentation to deal with imbalance in imaging-based intrusion detection[J]. Future Generation Computer Systems, 2021, 123: 108-127. 10.1016/j.future.2021.04.017 |
9 | DUAN T, TIAN Y H, ZHANG H R, et al. Intelligent processing of intrusion detection data[J]. IEEE Access, 2020, 8: 78330-78342. 10.1109/access.2020.2989498 |
10 | 王蓉,马春光,武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. 10.3969/j.issn.1671-1122.2020.04.006 |
WANG R, MA C G, WU P. An intrusion detection method based on federated learning and convolutional neural network[J]. Netinfo Security, 2020, 20(4): 47-54. 10.3969/j.issn.1671-1122.2020.04.006 | |
11 | 赵英,王丽宝,陈骏君,等. 基于联邦学习的网络异常检测[J]. 北京化工大学学报(自然科学版), 2021, 48(2): 92-99. 10.13543/j.bhxbzr.2021.02.012 |
ZHAO Y, WANG L B, CHEN J J, et al. Network anomaly detection based on federated learning[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(2): 92-99. 10.13543/j.bhxbzr.2021.02.012 | |
12 | HASSAN M M, GUMAEI A, ALSANAD A, et al. A hybrid deep learning model for efficient intrusion detection in big data environment[J]. Information Sciences, 2020, 513: 386-396. 10.1016/j.ins.2019.10.069 |
13 | KAIROUZ P, McMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends® in Machine Learning, 2021, 14(1/2): 1-210. 10.1561/2200000083 |
14 | KALIMUTHAN C, AROKIA RENJIT J. Review on intrusion detection using feature selection with machine learning techniques[J]. Materials Today: Proceedings, 2020, 33(Pt 7): 3794-3802. 10.1016/j.matpr.2020.06.218 |
15 | LeCUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. 10.1162/neco.1989.1.4.541 |
16 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 |
17 | 张昊,张小雨,张振友,等. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6):17-28. 10.3778/j.issn.1002-8331.2107-0084 |
ZHANG H, ZHANG X Y, ZHANG Z Y, et al. Summary of intrusion detection models based on deep learning[J]. Computer Engineering and Applications, 2022, 58(6):17-28. 10.3778/j.issn.1002-8331.2107-0084 | |
18 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
19 | AGRAWAL S, SARKAR S, AOUEDI O, et al. Federated learning for intrusion detection system: concepts, challenges and future directions[J]. Computer Communications, 2022, 195: 346-361. 10.1016/j.comcom.2022.09.012 |
20 | NAIM C, YE F W, ROUAYHEB S EL. ON-OFF privacy with correlated requests[C]// Proceedings of the 2019 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2019: 817-821. 10.1109/isit.2019.8849461 |
21 | BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: system design[C/OL]// Proceedings of the 2nd Conference on Machine Learning and Systems. [2021-11-23].. |
22 | SATTLER F, WIEDEMANN S, MÜLLER K R, et al. Robust and communication-efficient federated learning from non-iid data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3400-3413. 10.1109/tnnls.2019.2944481 |
23 | WOODWORTH B, PATEL K K, SREBRO N. Minibatch vs local SGD for heterogeneous distributed learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 6281-6292. |
24 | REDDI S J, CHARLES Z, ZAHEER M, et al. Adaptive federated optimization[EB/OL]. (2021-09-08) [2021-11-19].. |
25 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C/OL]// Proceedings of the 3rd Conference on Machine Learning and Systems. [2021-11-23].. 10.1109/ieeeconf44664.2019.9049023 |
26 | XIE C, KOYEJO S, GUPTA I. Asynchronous federated optimization[C/OL]// Proceedings of the 12th Annual Workshop on Optimization for Machine Learning. [2021-12-19].. |
27 | YU H, JIN R, YANG S. On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization[C]// Proceedings of the 26th International Conference on Machine Learning. New York: JMLR.org, 2019: 7184-7193. |
28 | LI K, ZHOU H C, TU Z, et al. Distributed network intrusion detection system in satellite-terrestrial integrated networks using federated learning[J]. IEEE Access, 2020, 8: 214852-214865. 10.1109/access.2020.3041641 |
29 | SUN Y W, ESAKI H, OCHIAI H. Adaptive intrusion detection in the networking of large-scale LANs with segmented federated learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 102-112. 10.1109/ojcoms.2020.3044323 |
[1] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. |
[2] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[3] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[4] | Zihao YAO, Yuanming LI, Ziqiang MA, Yang LI, Lianggen WEI. Multi-object cache side-channel attack detection model based on machine learning [J]. Journal of Computer Applications, 2024, 44(6): 1862-1871. |
[5] | Wei LUO, Jinquan LIU, Zheng ZHANG. Dual vertical federated learning framework incorporating secret sharing technology [J]. Journal of Computer Applications, 2024, 44(6): 1872-1879. |
[6] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[7] | Wei SHE, Yang LI, Lihong ZHONG, Defeng KONG, Zhao TIAN. Hyperparameter optimization for neural network based on improved real coding genetic algorithm [J]. Journal of Computer Applications, 2024, 44(3): 671-676. |
[8] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. |
[9] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[10] | Zucuan ZHANG, Xuebin CHEN, Rui GAO, Yuanhuai ZOU. Federated learning client selection method based on label classification [J]. Journal of Computer Applications, 2024, 44(12): 3759-3765. |
[11] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
[12] | Shuaihua ZHANG, Shufen ZHANG, Mingchuan ZHOU, Chao XU, Xuebin CHEN. Malicious traffic detection model based on semi-supervised federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3487-3494. |
[13] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
[14] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[15] | Wenze CHAI, Jing FAN, Shukui SUN, Yiming LIANG, Jingfeng LIU. Overview of deep metric learning [J]. Journal of Computer Applications, 2024, 44(10): 2995-3010. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||