[1] PORAMBAGE P,OKWUIBE J,LIYANAGE M,et al. Survey on multi-access edge computing for internet of things realization[J]. IEEE Communications Surveys and Tutorials,2018,20(4):2961-2991. [2] YOUSEFPOUR A,FUNG C,NGUYEN T,et al. All one needs to know about fog computing and related edge computing paradigms:a complete survey[J]. Journal of Systems Architecture,2019,98:289-330. [3] AAZAM M, ZEADALLY S, HARRAS K A. Deploying fog computing in industrial internet of things and industry 4.0[J]. IEEE Transactions on Industrial Informatics,2018,14(10):4674-4682. [4] REN P,QIAO X Q,CHEN J L,et al. Mobile edge computing-a booster for the practical provisioning approach of Web-based augmented reality[C]//Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing. Piscataway:IEEE, 2018:349-350. [5] 魏立斐, 陈聪聪, 张蕾, 等. 机器学习的安全问题及隐私保护[J]. 计算机研究与发展,2020,57(10):2066-2085.(WEI L F, CHEN C C, ZHANG L, et al. Security issues and privacy preserving in machine learning[J]. Journal of Computer Research and Development,2020,57(10):2066-2085.) [6] VERBRAEKEN J,WOLTING M,KATZY J,et al. A survey on distributed machine learning[J]. ACM Computing Surveys,2020, 53(2):No. 30. [7] McMAHAN H B, MOORE E, RAMAGE D, et al. Federated learning of deep networks using model averaging[EB/OL]. (2016-02-17)[2020-11-13]. https://arxiv.org/pdf/1602.05629v1.pdf. [8] YANG Q,LIU Y,CHEN T J,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology,2019,10(12):No. 12. [9] LI M S,GAO J,ZHAO L,et al. Deep reinforcement learning for collaborative edge computing in vehicular networks[J]. IEEE Transactions on Cognitive Communications and Networking,2020, 6(4):1122-1135. [10] ZHU G X,LIU D Z,DU Y Q,et al. Toward an intelligent edge:wireless communication meets machine learning[J]. IEEE Communications Magazine,2020,58(1):19-25. [11] MAHMOUDI A,GHADIKOLAEI H S,FISCHIONE C. Costefficient distributed optimization in machine learning over wireless networks[C]//Proceedings of the 2020 IEEE International Conference on Communications. Piscataway:IEEE,2020:1-7. [12] 罗长银, 陈学斌, 马春地, 等. 面向区块链的在线联邦增量学习算法[J]. 计算机应用,2021,41(2):363-371.(LUO C Y, CHEN X B,MA C D,et al. Online federated incremental learning algorithm for blockchain[J]. Journal of Computer Applications, 2021,41(2):363-371.) [13] 谷晓会, 章国安. 移动边缘计算在车载网中的应用综述[J]. 计算机应用研究,2020,37(6):1615-1621.(GU X H,ZHANG G A. Survey of mobile edge computing applications in vehicular network[J]. Application Research of Computers,2020,37(6):1615-1621.) [14] 陶永, 蒋昕昊, 刘默, 等. 智能制造和工业互联网融合发展初探[J]. 中国工程科学,2020,22(4):24-33.(TAO Y,JIANG X H, LIU M, et al. A preliminary study on the integration of intelligent manufacturing and industrial Internet[J]. Strategic Study of CAE,2020,22(4):24-33.) [15] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84-90. [16] MCMAHAN H B,MOOR E,RAMAGE D,et al. Communicationefficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York:JMLR. org,2017:1273-1282. [17] GUO M,LI L,GUAN Q S. Energy-efficient and delay-guaranteed workload allocation in IoT-edge-cloud computing systems[J]. IEEE Access,2019,7:78685-78697. [18] MONDERER D,SHAPLEY L S. Potential games[J]. Games and Economic Behavior,1996,14(1):124-143. [19] LeCUN Y,CORTES C,BURGES C J C. The MNIST database of handwritten digits[DB/OL].[2020-11-13]. http://yann.lecun.com/exdb/mnist/. [20] NISHIO T,YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge[C]//Proceedings of the 2019 IEEE International Conference on Communications. Piscataway:IEEE,2019:1-7. |