《计算机应用》唯一官方网站

• •    下一篇

基于空间注意力的气温预报误差订正网络

赵学良1,张渝淋1,孙启龙1,刘林春2,朱峰2,刘晓莉3   

  1. 1. 中国科学院重庆绿色智能技术研究院
    2. 内蒙古自治区气象台
    3. 中国石油股份有限公司西南油气田分公司天然气净化总厂信息管理部
  • 收稿日期:2025-01-09 修回日期:2025-03-26 发布日期:2025-04-27 出版日期:2025-04-27
  • 通讯作者: 赵学良
  • 基金资助:
    人工智能技术在极端高温预报中的应用研究

Spatial attention-based air temperature forecasting correction network

  • Received:2025-01-09 Revised:2025-03-26 Online:2025-04-27 Published:2025-04-27
  • Supported by:
    The Application of Artificial Intelligence Technology in Extreme High Temperature Forecasting

摘要: 气温预报误差的订正方法对社会发展和个人生活都具有重要意义。以U-Net为基础的模型受本身归纳偏置限制,对具备显著地理差异的气象数据订正存在一定局限性。为解决该问题,采用全连接网络对格点独立订正,并添加空间注意力层,对不同区域进行权值动态调整,提出了基于空间注意力的格点气温订正网络SAGTCN。在内蒙古自治区气象数据集上,将SAGTCN模型与基于U-Net和Attention U-Net的订正模型进行了对比。实验结果表明,SAGTCN模型的平均绝对误差MAE比二者低5.8%,均方误差MSE分别低14.96%和10.98%。在预报时效为13小时~48小时的对比中,SAGTCN模型的订正效果除在2个时效上略差、3个时效接近外,在其他31个预报时效上都要优于对比模型。

关键词: 气温预报, 误差校正, 深度学习, 空间注意力

Abstract: Error correction for temperature forecasting is significant for social development and personal life. The U-Net-based models have limitations in correcting meteorological data with geographical differences due to their inherent inductive bias. To address this, a Spatial Attention-based Grid Temperature Correction Network (SAGTCN) was proposed, which uses fully connected networks for grid-point-independent correction and adds spatial attention layers for dynamic regional weighting. On Inner Mongolia's meteorological data, SAGTCN outperforms U-Net and Attention U-Net-based models, with a 5.8% lower Mean Absolute Error (MAE), 14.96% and 10.98% lower Mean Square Error (MSE). In the test of forecasts with 13 - 48 hours lead time, SAGTCN is better in 31 out of 36 lead times, with only 3 close ones, and 2 slightly worse ones.

Key words: air temperature forecasting, error correction, deep learning, spatial attention

中图分类号: