[1] |
HUANG S C, PAREEK A, JENSEN M, et al. Self-supervised learning for medical image classification: a systematic review and implementation guidelines[J]. npj Digital Medicine, 2023, 6: No.74.
|
[2] |
KUMAR A, SINGH S K, SAXENA S, et al. Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer[J]. Information Sciences, 2020, 508: 405-421.
|
[3] |
SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al. A dataset for breast cancer histopathological image classification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(7): 1455-1462.
|
[4] |
WANG H, WANG S, QIN Z, et al. Triple attention learning for classification of 14 thoracic diseases using chest radiography[J]. Medical Image Analysis, 2021, 67: No.101846.
|
[5] |
BELLET A, HABRARD A, SEBBAN M. A survey on metric learning for feature vectors and structured data[R/OL]. [2024-11-10]..
|
[6] |
CHEN Y, LIU Z, XU H, et al. Meta-baseline: exploring simple meta-learning for few-shot learning[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9042-9051.
|
[7] |
DAI Z, YI J, YAN L, et al. PFEMed: few-shot medical image classification using prior guided feature enhancement[J]. Pattern Recognition, 2023, 134: No.109108.
|
[8] |
HU Y, GRIPON V, PATEUX S. Leveraging the feature distribution in transfer-based few-shot learning[C]// Proceedings of the 2021 International Conference on Artificial Neural Networks, LNCS 12892. Cham: Springer, 2021: 487-499.
|
[9] |
谢莉,舒卫平,耿俊杰,等. 结合加权原型和自适应张量子空间的小样本宫颈细胞分类[J]. 计算机应用, 2024, 44(10): 3200-3208.
|
|
XIE L, SHU W P, GENG J J, et al. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspaces[J]. Journal of Computer Applications, 2024, 44(10): 3200-3208.
|
[10] |
LIU J, SONG L, QIN Y. Prototype rectification for few-shot learning[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 741-756.
|
[11] |
LEE J H, ZAHEER M Z, ASTRID M, et al. SmoothMix: a simple yet effective data augmentation to train robust classifiers[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 3264-3274.
|
[12] |
DeVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[EB/OL]. [2024-11-10]..
|
[13] |
ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[EB/OL]. [2024-11-10]..
|
[14] |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6022-6031.
|
[15] |
VERMA V, LAMB A, BECKHAM C, et al. Manifold Mixup: better representations by interpolating hidden states[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6438-6447.
|
[16] |
严一钦,罗川,李天瑞,等. 基于关系网络和vision Transformer的跨域小样本分类模型[J/OL]. 计算机应用 [2024-06-21]..
|
|
YAN Y Q, LUO C, LI T R, et al. Cross-domain few-shot classification model based on relational networks and vision Transformer[J/OL]. Journal of Computer Applications [2024-06-21]..
|
[17] |
GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations[EB/OL]. [2024-11-10]..
|
[18] |
蔡安平. 基于属性的小样本分类算法及在医学图像上的应用[D]. 成都:电子科技大学, 2023.
|
|
CAI A P. Attribute-based classification algorithm for few-shot and application to medical images[D]. Chengdu: University of Electronic Science and Technology of China, 2023.
|
[19] |
FU W, CHEN J, ZHOU L. Boosting few-shot rare skin disease classification via self-supervision and distribution calibration[J]. Biomedical Engineering Letters, 2024, 14(4): 877-889.
|
[20] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645.
|
[21] |
ZAGORUYKO S, KOMODAKIS N. Wide residual networks[C]// Proceedings of the 2016 British Machine Vision Conference. Durham: BMVA Press, 2016: No.87.
|
[22] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
[23] |
ZHENG X, WANG Y, LIU Y, et al. Graph neural networks for graphs with heterophily: a survey[EB/OL]. [2024-11-10]..
|
[24] |
BAI J, HUANG S, XIAO Z, et al. Few-shot hyperspectral image classification based on adaptive subspaces and feature transformation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5523917.
|
[25] |
MANGLA P, SINGH M, SINHA A, et al. Charting the right manifold: Manifold Mixup for few-shot learning[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2207-2216.
|
[26] |
张涛,王波,赵宇,等. 基于特征分布校准的小样本分类改进算法[J].扬州大学学报(自然科学版), 2024, 27(1):56-61.
|
|
ZHANG T, WANG B, ZHAO Y, et al. Improved few-shot classification algorithm based on feature distribution calibration[J]. Journal of Yangzhou University (Natural Science Edition), 2024, 27(1):56-61.
|
[27] |
ZOU J, MA X, ZHONG C, et al. Dermoscopic image analysis for ISIC challenge 2018[EB/OL]. [2024-11-10]..
|
[28] |
SINGH R, BHARTI V, PUROHIT V, et al. MetaMed: few-shot medical image classification using gradient-based meta-learning[J]. Pattern Recognition, 2021, 120: No.108111.
|
[29] |
CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[EB/OL]. [2024-11-10]..
|
[30] |
LIU B, CAO Y, LIN Y, et al. Negative margin matters: understanding margin in few-shot classification[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12349. Cham: Springer, 2020: 438-455.
|