《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (7): 2113-2122.DOI: 10.11772/j.issn.1001-9081.2024070932

• CCF第39届中国计算机应用大会 (CCF NCCA 2024) • 上一篇    下一篇

基于元学习的标签噪声自适应学习算法

齐巧玲1, 王啸啸2, 张茜茜3(), 汪鹏2, 董永峰2,4,5   

  1. 1.河北工业大学 电气工程学院,天津 300130
    2.河北工业大学 人工智能与数据科学学院,天津 300401
    3.河北工业大学 能源与环境工程学院,天津 300401
    4.天津市虚拟现实与可视计算国际联合中心,天津 300401
    5.河北省数据驱动工业智能工程研究中心(河北工业大学),天津 300401
  • 收稿日期:2024-07-05 修回日期:2024-10-15 接受日期:2024-10-16 发布日期:2025-07-10 出版日期:2025-07-10
  • 通讯作者: 张茜茜
  • 作者简介:齐巧玲(1984—),女,河北晋州人,讲师,硕士,主要研究方向:人工智能
    王啸啸(1998—),女,河北衡水人,硕士研究生,主要研究方向:图像处理
    张茜茜(1987—),女,山东潍坊人,讲师,硕士,主要研究方向:创新创业教育 zhenghaibin29@buaa.edu.cn
    汪鹏(1978—),男,河北邯郸人,副教授,博士,CCF会员,主要研究方向:机器学习、智能计算
    董永峰(1977—),男,河北定州人,教授,博士,CCF会员,主要研究方向:计算机视觉、智能信息处理。
  • 基金资助:
    中国高等教育学会高等教育科学研究规划课题(22XX0401);河北省首批省级研究生教育教学改革研究项目(YJG2023024)

Label noise adaptive learning algorithm based on meta-learning

Qiaoling QI1, Xiaoxiao WANG2, Qianqian ZHANG3(), Peng WANG2, Yongfeng DONG2,4,5   

  1. 1.School of Electrical Engineering,Hebei University of Technology,Tianjin 300130,China
    2.School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China
    3.School of Energy and Environmental Engineering,Hebei University of Technology,Tianjin 300401,China
    4.Tianjin International Joint Center for Virtual Reality and Visual Computing,Tianjin 300401,China
    5.Hebei Data Driven Industrial Intelligent Engineering Research Center (Hebei University of Technology),Tianjin 300401,China
  • Received:2024-07-05 Revised:2024-10-15 Accepted:2024-10-16 Online:2025-07-10 Published:2025-07-10
  • Contact: Qianqian ZHANG
  • About author:QI Qiaoling, born in 1984, M. S., lecturer. Her research interests include artificial intelligence.
    WANG Xiaoxiao, born in 1998, M. S. candidate. Her research interests include image processing.
    ZHANG Qianqian, born in 1987, M. S., lecturer. Her research interests include innovation and entrepreneurship education.
    WANG Peng, born in 1978, Ph. D., associate professor. His research interests include machine learning, intelligent computing.
    DONG Yongfeng, born in 1977, Ph. D., professor. His research interests include computer vision, intelligent information processing.
  • Supported by:
    Higher Education Scientific Research Planning of China Association of Higher Education Project(22XX0401);First Batch of Provincial Postgraduate Education and Teaching Reform Research Project in Hebei Province(YJG2023024)

摘要:

图像分类需要收集大量的图片进行模型训练与优化,但收集过程会不可避免地带来噪声标签。为了应对这一挑战,鲁棒性分类方法应运而生。在目前的鲁棒性分类方法中,超参数的设置需要手动调节,对人力物力带来了大量的损耗。因此,提出元超参数调节器(MHA),采用双层嵌套循环优化的方法自适应地学习噪声感知的超参数组合,并提出Meta-FPL (Feature Pseudo-Label adaptive learning based on Meta learning)算法。此外,为了解决元训练阶段的反向传播过程耗费大量GPU算力的问题,提出选择激活元模型层(SAML)策略。该策略通过比较虚拟训练阶段反向传播的平均梯度与元梯度的大小,限制部分元模型层的更新,从而有效提升模型的训练效率。在4个基准数据集和1个真实数据集上的实验结果表明,与MLC(Meta Label Correction for noisy label learning)、CTRR(ConTrastive RegulaRization)和FPL(Feature Pseudo-Label)算法相比,Meta-FPL算法的分类准确率较高。此外,引入SAML策略后,在元训练阶段的反向传播过程训练时长缩短了79.52%。可见,Meta-FPL算法能在较短的训练时间内有效提升分类测试准确率。

关键词: 深度学习, 深度神经网络, 图像分类, 标签噪声, 元学习

Abstract:

Image classification requires the collection of a large number of images for model training and optimization, but the image collection process will bring noisy labels inevitably. To cope with this challenge, robust classification methods have emerged. The setting of hyperparameters in the current robust classification methods needs to be adjusted manually, which brings a lot of loss in human and material resources. Therefore, Meta Hyperparameter Adjuster (MHA) was proposed, which adopted a two-layer nested loop optimization method to learn noise-aware hyperparameter combinations adaptively, and a Meta-FPL (Feature Pseudo-Label adaptive learning algorithm based on Meta learning) algorithm was proposed too. In addition, in order to solve the problem that the backpropagation process in meta training phase consumes a large amount of GPU computing power, the Select Activation Metamodel Layer (SAML) strategy was proposed, which restricts the update of some metamodel layers by comparing sizes of the average gradient of the backpropagation and the meta-gradient in virtual training phase, which improves training efficiency of the model effectively. Experimental results on four benchmark datasets and one real dataset show that compared with MLC (Meta Label Correction for noisy label learning), CTRR (ConTrastive RegulaRization) and Feature Pseudo Label (FPL) algorithms, Meta-FPL algorithm has a higher classification accuracy. In addition, after introducing SAML strategy, the training duration of the backpropagation process in the meta training phase was reduced by 79.52%. It can be seen that Meta-FPL algorithm can effectively improve the accuracy of classification testing in a shorter training time.

Key words: deep learning, deep neural network, image classification, label noise, meta-learning

中图分类号: