摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 三年内
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 联邦学习综述:概念、技术、应用与挑战
    梁天恺, 曾碧, 陈光
    《计算机应用》唯一官方网站    2022, 42 (12): 3651-3662.   DOI: 10.11772/j.issn.1001-9081.2021101821
    摘要2994)   HTML205)    PDF (2464KB)(2213)    收藏

    在强调数据确权以及隐私保护的时代背景下,联邦学习作为一种新的机器学习范式,能够在不暴露各方数据的前提下达到解决数据孤岛以及隐私保护问题的目的。目前,基于联邦学习的建模方法已成为主流并且获得了很好的效果,因此对联邦学习的概念、技术、应用和挑战进行总结与分析具有重要的意义。首先,阐述了机器学习的发展历程以及联邦学习出现的必然性,并给出联邦学习的定义与分类;其次,介绍并分析了目前业界认可的三种联邦学习方法:横向联邦学习、纵向联邦学习和联邦迁移学习;然后,针对联邦学习的隐私保护问题,归纳并总结了目前常见的隐私保护技术;此外,还对联邦学习的现有主流开源框架进行了介绍与对比,同时给出了联邦学习的应用场景;最后,展望了联邦学习所面临的挑战和未来的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 推荐系统综述
    于蒙, 何文涛, 周绪川, 崔梦天, 吴克奇, 周文杰
    《计算机应用》唯一官方网站    2022, 42 (6): 1898-1913.   DOI: 10.11772/j.issn.1001-9081.2021040607
    摘要2161)   HTML201)    PDF (3152KB)(1755)    收藏

    随着网络应用的不断发展,网络资源呈指数型增长,信息过载现象日益严重,如何高效获取符合需求的资源成为困扰人们的问题之一。推荐系统能对海量信息进行有效过滤,为用户推荐符合其需求的资源。对推荐系统的研究现状进行详细介绍,包括基于内容的推荐、协同过滤推荐和混合推荐这三种传统推荐方式,并重点分析了基于卷积神经网络(CNN)、深度神经网络(DNN)、循环神经网络(RNN)和图神经网络(GNN)这四种常见的深度学习推荐模型的研究进展;归纳整理了推荐领域常用的数据集,同时分析对比了传统推荐算法和基于深度学习的推荐算法的差异。最后,总结了实际应用中具有代表性的推荐模型,讨论了推荐系统面临的挑战和未来的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 基于深度学习的多模态医学图像分割综述
    窦猛, 陈哲彬, 王辛, 周继陶, 姚宇
    《计算机应用》唯一官方网站    2023, 43 (11): 3385-3395.   DOI: 10.11772/j.issn.1001-9081.2022101636
    摘要1881)   HTML93)    PDF (3904KB)(2331)    收藏

    多模态医学图像可以为临床医生提供靶区(如肿瘤、器官或组织)的丰富信息。然而,由于多模态图像之间相互独立且仅有互补性,如何有效融合多模态图像并进行分割仍是亟待解决的问题。传统的图像融合方法难以有效解决此问题,因此基于深度学习的多模态医学图像分割算法得到了广泛的研究。从原理、技术、问题及展望等方面对基于深度学习的多模态医学图像分割任务进行了综述。首先,介绍了深度学习与多模态医学图像分割的一般理论,包括深度学习与卷积神经网络(CNN)的基本原理与发展历程,以及多模态医学图像分割任务的重要性;其次,介绍了多模态医学图像分割的关键概念,包括数据维度、预处理、数据增强、损失函数以及后处理等;接着,对基于不同融合策略的多模态分割网络进行综述,对不同方式的融合策略进行分析;最后,对医学图像分割过程中常见的几个问题进行探讨,并对今后研究作了总结与展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 基于多尺度卷积和注意力机制的LSTM时间序列分类
    玄英律, 万源, 陈嘉慧
    《计算机应用》唯一官方网站    2022, 42 (8): 2343-2352.   DOI: 10.11772/j.issn.1001-9081.2021061062
    摘要1845)   HTML77)    PDF (711KB)(915)    收藏

    时间序列的多尺度特征包含丰富的类别信息,且这些信息对分类具有不同的重要程度,然而现有的单变量时间序列分类模型通常以固定大小的卷积核提取序列特征,导致不能有效地获取并聚焦重要的多尺度特征。针对上述问题,提出一种基于多尺度卷积和注意力机制(MCA)的长短时记忆(LSTM)模型(MCA-LSTM),它能够关注并融合重要的多尺度特征,从而实现更准确的分类。其中,LSTM使用记忆细胞和门机制控制序列信息的传递,并充分提取时间序列的相关性信息;多尺度卷积模块(MCM)使用具有不同卷积核的卷积神经网络(CNN)提取序列的多尺度特征;注意力模块(AM)融合通道信息获取特征的重要性并分配注意力权重,从而使网络关注重要的时间序列特征。在UCR档案的65个单变量时间序列数据集上的实验结果表明,对比当前最先进的基于深度学习的时间序列分类模型:USRL-FordA(Unsupervised Scalable Representation Learning-FordA)、USRL-Combined (1-NN) (Unsupervised Scalable Representation Learning-Combined (1-Nearest Neighbor)) OS-CNN(Omni-Scale Convolutional Neural Network)、Inception-Time和RTFN(Robust Temporal Feature Network for time series classification),MCA-LSTM在平均错误率(ME)上分别降低了7.48、9.92、2.43、2.09和0.82个百分点,并取得了最高的算术平均排名(AMR)和几何平均排名(GMR),分别为2.14和3.23,这些充分体现了MCA-LSTM模型在单变量时间序列分类中的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 多模态预训练模型综述
    王惠茹, 李秀红, 李哲, 马春明, 任泽裕, 杨丹
    《计算机应用》唯一官方网站    2023, 43 (4): 991-1004.   DOI: 10.11772/j.issn.1001-9081.2022020296
    摘要1733)   HTML148)    PDF (5539KB)(1401)    PDF(mobile) (3280KB)(111)    收藏

    预训练模型(PTM)通过利用复杂的预训练目标和大量的模型参数,可以有效地获得无标记数据中的丰富知识。而在多模态中,PTM的发展还处于初期。根据具体模态的不同,将目前大多数的多模态PTM分为图像?文本PTM和视频?文本PTM;根据数据融合方式的不同,还可将多模态PTM分为单流模型和双流模型两类。首先,总结了常见的预训练任务和验证实验所使用的下游任务;接着,梳理了目前多模态预训练领域的常见模型,并用表格列出各个模型的下游任务以及模型的性能和实验数据比较;然后,介绍了M6(Multi-Modality to Multi-Modality Multitask Mega-transformer)模型、跨模态提示调优(CPT)模型、VideoBERT(Video Bidirectional Encoder Representations from Transformers)模型和AliceMind(Alibaba’s collection of encoder-decoders from Mind)模型在具体下游任务中的应用场景;最后,总结了多模态PTM相关工作面临的挑战以及未来可能的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 联邦学习中的隐私保护技术研究综述
    王腾, 霍峥, 黄亚鑫, 范艺琳
    《计算机应用》唯一官方网站    2023, 43 (2): 437-449.   DOI: 10.11772/j.issn.1001-9081.2021122072
    摘要1725)   HTML165)    PDF (2014KB)(1293)    收藏

    近年来,联邦学习成为解决机器学习中数据孤岛与隐私泄露问题的新思路。联邦学习架构不需要多方共享数据资源,只要参与方在本地数据上训练局部模型,并周期性地将参数上传至服务器来更新全局模型,就可以获得在大规模全局数据上建立的机器学习模型。联邦学习架构具有数据隐私保护的特质,是未来大规模数据机器学习的新方案。然而,该架构的参数交互方式可能导致数据隐私泄露。目前,研究如何加强联邦学习架构中的隐私保护机制已经成为新的热点。从联邦学习中存在的隐私泄露问题出发,探讨了联邦学习中的攻击模型与敏感信息泄露途径,并重点综述了联邦学习中的几类隐私保护技术:以差分隐私为基础的隐私保护技术、以同态加密为基础的隐私保护技术、以安全多方计算(SMC)为基础的隐私保护技术。最后,探讨了联邦学习中隐私保护中的若干关键问题,并展望了未来研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基于改进YOLOv8的嵌入式道路裂缝检测算法
    耿焕同, 刘振宇, 蒋骏, 范子辰, 李嘉兴
    《计算机应用》唯一官方网站    2024, 44 (5): 1613-1618.   DOI: 10.11772/j.issn.1001-9081.2023050635
    摘要1724)   HTML68)    PDF (2002KB)(2318)    收藏

    在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替换YOLOv8 C2f模块中的Bottleneck结构,并将改进后的C2f模块记为C2f-Faster;其次,在YOLOv8主干网络中的每个C2f-Faster模块之后接一个SE(Squeeze-and-Excitation)通道注意力层,进一步提高检测的精度。在开源道路损害数据集RDD20(Road Damage Detection 20)上的实验结果表明:所提方法的平均F1得分为0.573,每秒检测帧数(FPS)为47,模型大小为55.5 MB,相较于GRDDC2020 (Global Road Damage Detection Challenge 2020)的SOTA(State-Of-The-Art)模型,F1得分提高了0.8个百分点,FPS提高了291.7%,模型大小减小了41.8%,实现了在边缘设备上对道路裂缝实时且准确的检测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 实例簇驱动的图结构聚类参数计算算法
    宗传玉, 宪超, 夏秀峰
    《计算机应用》唯一官方网站    2023, 43 (2): 398-406.   DOI: 10.11772/j.issn.1001-9081.2022010082
    摘要1715)   HTML19)    PDF (2584KB)(86)    收藏

    pSCAN算法的聚类结果受密度约束参数和相似度阈值参数的影响,如果用户提供的聚类参数得到的聚类结果无法满足需求,那么用户可以通过实例簇表达自己的聚类需求。针对实例簇表达聚类查询需求的问题,提出一种实例簇驱动的图结构聚类参数计算算法PART及其改进算法ImPART。首先,分析两个聚类参数对聚类结果的影响,并提取实例簇的相关子图;其次,对相关子图进行分析得到密度约束参数的可行区间,并根据当前密度约束参数和节点之间的结构相似度将实例簇内节点划分为核心节点和非核心节点;最后,依据节点划分结果计算出当前密度约束参数对应的最优相似度阈值参数,并在相关子图上对得到的参数进行验证和优化,直到得到满足实例簇需求的聚类参数。在真实数据集上的实验结果表明,所提算法能够为用户实例簇返回一组有效参数,且所提改进算法ImPART的运行时间比PART缩短了20%以上,能够快速有效地为用户返回满足实例簇要求的最优聚类参数。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于Transformer的U型医学图像分割网络综述
    傅励瑶, 尹梦晓, 杨锋
    《计算机应用》唯一官方网站    2023, 43 (5): 1584-1595.   DOI: 10.11772/j.issn.1001-9081.2022040530
    摘要1691)   HTML85)    PDF (1887KB)(1179)    收藏

    目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥补CNN的不足,结合Transformer和U型结构的分割网络成为研究热点之一。在详细介绍U-Net和Transformer之后,按医学图像分割模型中Transformer模块所处的位置,包括仅在编码器或解码器、同时在编码器和解码器、作为过渡连接和其他位置进行分类,讨论各模型的基本内容、设计理念以及可改进的地方,并分析了Transformer处于不同位置的优缺点。根据分析结果可知,决定Transformer所在位置的最大因素是目标分割任务的特点,而且Transformer结合U-Net的分割模型能更好地利用CNN和Transformer各自的优势,提高模型的分割性能,具有较大的发展前景和研究价值。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 深度学习可解释性研究综述
    雷霞, 罗雄麟
    《计算机应用》唯一官方网站    2022, 42 (11): 3588-3602.   DOI: 10.11772/j.issn.1001-9081.2021122118
    摘要1637)   HTML94)    PDF (1703KB)(1283)    收藏

    随着深度学习的广泛应用,人类越来越依赖于大量采用深度学习技术的复杂系统,然而,深度学习模型的黑盒特性对其在关键任务应用中的使用提出了挑战,引发了道德和法律方面的担忧,因此,使深度学习模型具有可解释性是使它们令人信服首先要解决的问题。于是,关于可解释的人工智能领域的研究应运而生,主要集中于向人类观察者明确解释模型的决策或行为。对深度学习可解释性的研究现状进行综述,为进一步深入研究建立更高效且具有可解释性的深度学习模型确立良好的基础。首先,对深度学习可解释性进行了概述,阐明可解释性研究的需求和定义;然后,从解释深度学习模型的逻辑规则、决策归因和内部结构表示这三个方面出发介绍了几种可解释性研究的典型模型和算法,另外还指出了三种常见的内置可解释模型的构建方法;最后,简单介绍了忠实度、准确性、鲁棒性和可理解性这四种评价指标,并讨论了深度学习可解释性未来可能的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 深度学习在天气预报领域的应用分析及研究进展综述
    董润婷, 吴利, 王晓英, 曹腾飞, 黄建强, 管琴, 吴洁瑕
    《计算机应用》唯一官方网站    2023, 43 (6): 1958-1968.   DOI: 10.11772/j.issn.1001-9081.2022050745
    摘要1593)   HTML130)    PDF (1570KB)(3948)    收藏

    随着传感器网络和全球定位系统等技术的进步,兼有时间与空间特性的气象数据体量呈爆炸式增长,针对时空序列预测(STSF)的深度学习模型研究得到了迅猛发展。然而,长期以来用于天气预报的传统机器学习方法在提取数据的时间相关性与空间依赖性方面的效果往往并不理想。与此同时,深度学习方法通过人工神经网络自动提取特征,可以有效提高天气预报的准确度,并且在编码长期空间信息的建模方面有相当优秀的效果。同时,由观测数据驱动的深度学习模型与基于物理理论的数值天气预报(NWP)模型结合的方式可以构建拥有更高预测精度与更长预报时间的混合模型。基于这些,将深度学习在天气预报领域的应用分析及研究进展进行了综述。首先,将天气预报领域的深度学习问题与经典深度学习问题从数据格式、问题模型与评价指标这3个方面进行了对比研究;然后,回顾了深度学习在天气预报领域的发展历程与应用现状,并总结分析了深度学习技术与NWP结合的最新进展;最后,展望了未来的发展方向和研究重点,为天气预报领域的深度学习研究提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 基于多模态信息融合的时间序列预测模型
    吴明晖, 张广洁, 金苍宏
    《计算机应用》唯一官方网站    2022, 42 (8): 2326-2332.   DOI: 10.11772/j.issn.1001-9081.2021061053
    摘要1568)   HTML96)    PDF (658KB)(811)    收藏

    针对传统单因子模型无法充分利用时间序列相关信息,以及这些模型对时间序列预测准确性和可靠性较差的问题,提出一种基于多模态信息融合的时间序列预测模型——Skip-Fusion对多模态数据中的文本数据和数值数据进行融合。首先利用BERT(Bidirectional Encoder Representations from Transformers)预训练模型和独热编码对不同类别的文本数据进行编码表示;再使用基于全局注意力机制的预训练模型获得多文本特征融合的单一向量表示;然后将得到的单一向量表示与数值数据按时间顺序对齐;最后通过时间卷积网络(TCN)模型实现文本和数值特征的融合,并通过跳跃连接完成多模态数据的浅层和深层特征的再次融合。在股票价格序列的数据集上进行实验,Skip-Fusion模型的均方根误差(RMSE)和日收益(R)分别为0.492和0.930,均优于现有的单模态模型和多模态融合模型的结果,同时在可决系数(R-Squared)上取得了0.955的拟合优度。实验结果表明,Skip-Fusion模型能够有效进行多模态信息融合并具有较高的预测准确性和可靠性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于区块链的联邦学习研究进展
    孙睿, 李超, 王伟, 童恩栋, 王健, 刘吉强
    《计算机应用》唯一官方网站    2022, 42 (11): 3413-3420.   DOI: 10.11772/j.issn.1001-9081.2021111934
    摘要1436)   HTML102)    PDF (1086KB)(1140)    收藏

    联邦学习(FL)是一种能够实现用户数据不出本地的新型隐私保护学习范式。随着相关研究工作的不断深入,FL的单点故障及可信性缺乏等不足之处逐渐受到重视。近年来,起源于比特币的区块链技术取得迅速发展,它开创性地构建了去中心化的信任,为FL的发展提供了一种新的可能。对现有基于区块链的FL框架进行对比分析,深入讨论区块链与FL相结合所解决的FL重要问题,并阐述了基于区块链的FL技术在物联网(IoT)、工业物联网(IIoT)、车联网(IoV)、医疗服务等多个领域的应用前景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 大语言模型的技术应用前景与风险挑战
    徐月梅, 胡玲, 赵佳艺, 杜宛泽, 王文清
    《计算机应用》唯一官方网站    2024, 44 (6): 1655-1662.   DOI: 10.11772/j.issn.1001-9081.2023060885
    摘要1280)   HTML102)    PDF (1142KB)(2305)    收藏

    针对大语言模型(LLM)技术的快速发展,剖析它的技术应用前景和风险挑战,对通用人工智能(AGI)的发展和治理有重要参考价值。首先,以Multi-BERT(Multilingual Bidirectional Encoder Representations from Transformers)、GPT(Generative Pre-trained Transformer)和ChatGPT(Chat Generative Pre-Trained Transformer)等语言模型为代表,综述LLM的发展脉络、核心技术和评估体系;其次,分析LLM现存的技术局限和安全风险;最后,提出LLM在技术上改进、政策上跟进的建议。分析指出作为发展阶段的LLM,现有模型存在非真实性及偏见性输出、实时自主学习能力欠缺,算力需求庞大,对数据质量和数量依赖性强,语言风格单一;存在数据隐私、信息安全和伦理等方面的安全风险。未来发展可从技术上继续改进,从“大规模”转向“轻量化”、从“单模态”走向“多模态”、从“通用”迈入“垂类”;从政策上实时跟进,实施有针对性的监管措施,规范应用和发展。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 多模态知识图谱表示学习综述
    王春雷, 王肖, 刘凯
    《计算机应用》唯一官方网站    2024, 44 (1): 1-15.   DOI: 10.11772/j.issn.1001-9081.2023050583
    摘要1268)   HTML118)    PDF (3449KB)(2654)    收藏

    在综合对比传统知识图谱表示学习模型优缺点以及适用任务后,发现传统的单一模态知识图谱无法很好地表示知识。因此,如何利用文本、图片、视频、音频等多模态数据进行知识图谱表示学习成为一个重要的研究方向。同时,详细分析了常用的多模态知识图谱数据集,为相关研究人员提供数据支持。在此基础上,进一步讨论了文本、图片、视频、音频等多模态融合下的知识图谱表示学习模型,并对其中各种模型进行了总结和比较。最后,总结了多模态知识图谱表示学习如何改善经典应用,包括知识图谱补全、问答系统、多模态生成和推荐系统在实际应用中的效果,并对未来的研究工作进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 基于改进YOLOv5s电动车头盔的自动检测与识别
    朱周华, 齐琦
    《计算机应用》唯一官方网站    2023, 43 (4): 1291-1296.   DOI: 10.11772/j.issn.1001-9081.2022020313
    摘要1250)   HTML58)    PDF (2941KB)(442)    PDF(mobile) (3142KB)(52)    收藏

    针对目前电动车头盔小目标检测的精度低、鲁棒性差,相关系统不完善等问题,提出了基于改进YOLOv5s的电动车头盔检测算法。所提算法引入卷积块注意力模块(CBAM)和协调注意力(CA)模块,采用改进的非极大值抑制(NMS),即DIoU-NMS(Distance Intersection over Union-Non Maximum Suppression);同时增加多尺度特征融合检测,并结合密集连接网络改善特征提取效果;最后,建立了电动车驾驶人头盔检测系统。在自建的电动车头盔佩戴数据集上,当交并比(IoU)为0.5时,所提算法的平均精度均值(mAP)比原始YOLOv5s提升了7.1个百分点,召回率(Recall)提升了1.6个百分点。实验结果表明,所提改进的YOLOv5s算法更能满足在实际情况中对电动车及驾驶员头盔的检测精度要求,一定程度上降低了电动车交通事故的发生率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 基于多重注意力机制的图神经网络股市波动预测方法
    李晓寒, 王俊, 贾华丁, 萧刘
    《计算机应用》唯一官方网站    2022, 42 (7): 2265-2273.   DOI: 10.11772/j.issn.1001-9081.2021081487
    摘要1222)   HTML32)    PDF (2246KB)(414)    收藏

    股票市场是金融市场关键组成部分,因此对股票市场波动的研究对合理化控制金融市场风险、提高投资收益提供了重要支持,一直以来都是学术界和相关业界的关注焦点,然而,股票市场会受到各种因素的影响。面对股票市场中多源化、异构化的信息,如何高效挖掘、融合股票市场的多源异构数据具有挑战性。为了充分解释不同信息及信息间相互作用对于股票市场价格波动的影响,提出一种基于多重注意力机制的图神经网络来预测股票市场的价格波动。首先,引入关系维度构建股票市场交易数据和新闻文本的异构子图,并利用多重注意力机制实现图数据的融合;其次,通过图神经网络门控循环单元(GRU)进行图分类,在此基础上完成对股票市场中上证综合指数、沪深300指数、深证成份指数这三个重要指数波动的预测。实验结果表明,从异构信息特性角度,相较于股票市场交易数据,股市新闻信息对于股票价格影响存在滞后性;从异构信息融合角度,所提方法与支持向量机(SVM)、随机森林、多核k-means (MKKM)聚类等算法相比,预测准确率分别提升了17.88个百分点、30.00个百分点和38.00个百分点,并进行了模型交易策略的量化投资模拟。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 融合注意力机制的时间卷积知识追踪模型
    邵小萌, 张猛
    《计算机应用》唯一官方网站    2023, 43 (2): 343-348.   DOI: 10.11772/j.issn.1001-9081.2022010024
    摘要1144)   HTML57)    PDF (2110KB)(526)    收藏

    针对基于循环神经网络(RNN)的深度知识追踪模型存在的可解释性不足和长序列依赖问题,提出一种融合注意力机制的时间卷积知识追踪(ATCKT)模型。首先,在训练阶段学习学生历史交互的嵌入表示;然后,使用基于题目的注意力机制学习特定权重矩阵,从而识别并强化学生的历史交互对每一时刻知识状态不同程度的影响;最后,使用时间卷积网络(TCN)提取学生动态变化的知识状态,在这个过程中利用扩张卷积和深层神经网络扩大序列学习范围,缓解长序列依赖问题。将ATCKT模型与深度知识追踪(DKT)、卷积知识追踪(CKT)等四种模型在ASSISTments2009、ASSISTments2015、Statics2011和Synthetic-5这4个数据集上进行对比实验,实验结果显示,所提模型的曲线下面积(AUC)和准确率(ACC)均有显著提升,尤其在ASSISTments2015数据集上表现最佳,分别提升了6.83~20.14个百分点和7.52~11.22个百分点,并且该模型的训练时间与DKT模型相比减少了26%。可见,所提模型可以更准确地捕捉学生的知识状态,更高效地预测学生未来的表现。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 深度学习的可解释性研究综述
    李凌敏, 侯梦然, 陈琨, 刘军民
    《计算机应用》唯一官方网站    2022, 42 (12): 3639-3650.   DOI: 10.11772/j.issn.1001-9081.2021091649
    摘要1089)   HTML77)    PDF (4239KB)(731)    收藏

    近年来,深度学习在很多领域得到广泛应用;然而,由于深度神经网络模型的高度非线性操作,导致其可解释性较差,并常常被称为“黑箱”模型,无法应用于一些对性能要求较高的关键领域;因此,对深度学习的可解释性开展研究是很有必要的。首先,简单介绍了深度学习;然后,围绕深度学习的可解释性,从隐层可视化、类激活映射(CAM)、敏感性分析、频率原理、鲁棒性扰动测试、信息论、可解释模块和优化方法这8个方面对现有研究工作进行分析;同时,展示了深度学习在网络安全、推荐系统、医疗和社交网络领域的应用;最后,讨论了深度学习可解释性研究存在的问题及未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 基于深度学习的标签噪声学习算法综述
    伏博毅, 彭云聪, 蓝鑫, 秦小林
    《计算机应用》唯一官方网站    2023, 43 (3): 674-684.   DOI: 10.11772/j.issn.1001-9081.2022020198
    摘要1081)   HTML83)    PDF (2083KB)(765)    PDF(mobile) (733KB)(49)    收藏

    在深度学习领域中,大量正确标注的样本对于模型的训练和学习至关重要。然而,在实际的应用场景中,标注数据的成本很高,同时标注的样本质量会受人工标注的主观因素或工具技术的影响,在标注过程中无法避免标签噪声的产生。因此,现有的训练数据都存在一定的标签噪声,如何有效地训练带标签噪声的训练数据成为了研究的热点。围绕基于深度学习的标签噪声学习算法,首先详细阐述了标签噪声学习问题的来源、分类和影响;然后依照机器学习的不同要素分析了基于数据、损失函数、模型、训练方式的四种标签噪声学习策略;随后提供了各种应用场景下学习标签噪声问题的基础框架;最后,给出一些优化思路,并展望了标签噪声学习算法面临的挑战与未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 基于孪生网络的单目标跟踪算法综述
    王梦亭, 杨文忠, 武雍智
    《计算机应用》唯一官方网站    2023, 43 (3): 661-673.   DOI: 10.11772/j.issn.1001-9081.2022010150
    摘要1064)   HTML132)    PDF (2647KB)(784)    收藏

    单目标跟踪是计算机视觉领域的一个重要研究方向,在视频监控、自动驾驶等领域应用广泛。对于单目标跟踪算法,尽管已有大量总结研究,但大多基于相关滤波或深度学习。近年来,基于孪生网络的跟踪算法因在精度和速度之间取得的平衡受到研究者们的广泛关注,然而目前对该类型算法的总结分析相对较少,并且对这些算法的架构层面缺少系统分析。为深入了解基于孪生网络的单目标跟踪算法,对大量相关文献进行了总结与分析。首先阐述孪生网络的结构和应用,并根据孪生跟踪算法架构组成的分类介绍了各跟踪算法;然后列举单目标跟踪领域常用的数据集和评价指标,对25个主流跟踪算法在OTB2015数据集上分别进行整体和各属性的性能比较与分析,并列出23个孪生跟踪算法在LaSOT和GOT-10K测试集上的性能以及推理时的速度;最后对基于孪生网络的目标跟踪算法的研究进行总结,并对未来的发展方向进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 事件抽取综述
    马春明, 李秀红, 李哲, 王惠茹, 杨丹
    《计算机应用》唯一官方网站    2022, 42 (10): 2975-2989.   DOI: 10.11772/j.issn.1001-9081.2021081542
    摘要1057)   HTML149)    PDF (3054KB)(605)    收藏

    将用户感兴趣的事件从非结构化信息中提取出来,然后以结构化的方式展示给用户,这就是事件抽取。事件抽取在信息收集、信息检索、文档合成、信息问答等方面有着广泛应用。从全局出发,事件抽取算法可以分为基于模式匹配的算法、触发词法、基于本体的算法以及前沿联合模型方法这四类。在研究过程中根据相关需求可使用不同评价方法和数据集,而不同的事件表示方法也与事件抽取研究有一定联系;以任务类型区分,元事件抽取和主题事件抽取是事件抽取的两大基本任务。其中,元事件抽取有基于模式匹配、基于机器学习和基于神经网络这三种方式,而主题事件抽取有基于事件框架和基于本体两种方式。事件抽取研究在中英等单语言上均已取得了优秀成果,而跨语言事件抽取依然面临着许多问题。最后,总结了事件抽取的相关工作并提出未来研究方向,以期为后续研究提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 新型算力网络架构及其应用案例分析
    狄筝, 曹一凡, 仇超, 罗韬, 王晓飞
    《计算机应用》唯一官方网站    2022, 42 (6): 1656-1661.   DOI: 10.11772/j.issn.1001-9081.2021061497
    摘要1010)   HTML85)    PDF (1584KB)(504)    收藏

    随着人工智能(AI)算力向网络边缘甚至终端设备扩散,端边云超协同的算力网络成为最佳计算解决方案,而新机遇催生了端边云超计算和网络之间的深度集成。然而,集成系统的完整开发还没有得到很好的解决,包括适应性、灵活性和价值性,因此提出了一种区块链赋能的端边云超算力网络架构。其中,端边云超融合为框架提供基础设施,该设施构成的算力资源池为用户提供安全可靠的算力,网络通过调度资源满足用户需求,而框架内的神经网络和执行平台为AI任务执行提供接口;同时,区块链保证资源交易的可靠性,以激励更多算力贡献者加入平台。本框架为算力网络中的用户提供了适应性,为组网算力资源调度提供了灵活性,为算力供应商提供了价值激励,并利用案例清晰地描述了该新型算力网络架构。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 不平衡多分类算法综述
    李蒙蒙, 刘艺, 李庚松, 郑奇斌, 秦伟, 任小广
    《计算机应用》唯一官方网站    2022, 42 (11): 3307-3321.   DOI: 10.11772/j.issn.1001-9081.2021122060
    摘要996)   HTML99)    PDF (1861KB)(646)    收藏

    不平衡数据分类是机器学习领域的重要研究内容,但现有的不平衡分类算法通常针对不平衡二分类问题,关于不平衡多分类的研究相对较少。然而实际应用中的数据集通常具有多类别且数据分布具有不平衡性,而类别的多样性进一步加剧了不平衡数据的分类难度,因此不平衡多分类问题已经成为亟待解决的研究课题。针对近年来提出的不平衡多分类算法展开综述,根据是否采用分解策略把不平衡多分类算法分为分解方法和即席方法,并进一步将分解方法按照分解策略的不同划分为“一对一(OVO)”架构和“一对多(OVA)”架构,将即席方法按照处理技术的不同分为数据级方法、算法级方法、代价敏感方法、集成方法和基于深度网络的方法。系统阐述各类方法的优缺点及其代表性算法,总结概括不平衡多分类方法的评价指标,并通过实验深入分析代表性方法的性能,讨论了不平衡多分类的未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. YOLO算法及其在自动驾驶场景中目标检测综述
    邓亚平, 李迎江
    《计算机应用》唯一官方网站    2024, 44 (6): 1949-1958.   DOI: 10.11772/j.issn.1001-9081.2023060889
    摘要993)   HTML42)    PDF (1175KB)(881)    收藏

    自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You Only Look Once)算法在自动驾驶领域中的目标检测研究现状,从以下4个方面分析。首先,总结单阶段YOLO系列检测算法思想及其改进方法,分析YOLO系列算法的优缺点;其次,论述YOLO算法在自动驾驶场景下目标检测中的应用,从交通车辆、行人和交通信号识别这3个方面分别阐述和总结研究现状及应用情况;此外,总结目标检测中常用的评价指标、目标检测数据集和自动驾驶场景数据集;最后,展望目标检测存在的问题和未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 基于个性化差分隐私的联邦学习算法
    尹春勇, 屈锐
    《计算机应用》唯一官方网站    2023, 43 (4): 1160-1168.   DOI: 10.11772/j.issn.1001-9081.2022030337
    摘要915)   HTML44)    PDF (1800KB)(600)    收藏

    联邦学习(FL)可以有效保护用户的个人数据不被攻击者获得,而差分隐私(DP)则可以实现FL的隐私增强,解决模型训练参数导致的隐私泄露问题。然而,现有的基于DP的FL方法只关注统一的隐私保护预算,而忽略了用户的个性化隐私需求。针对此问题,提出了一种两阶段的基于个性化差分隐私的联邦学习(PDP-FL)算法。在第一阶段,依据用户的隐私偏好对用户隐私进行分级,并添加满足用户隐私偏好的噪声,以实现个性化隐私保护,同时上传隐私偏好对应的隐私等级给中央聚合服务器;在第二阶段,为实现对全局数据的充分保护,采取本地和中心同时保护的策略,并根据用户上传的隐私等级,添加符合全局DP阈值的噪声,以量化全局的隐私保护水平。实验结果表明,在MNIST和CIFAR-10数据集上,PDP-FL算法的分类准确度分别为93.8%~94.5%和43.4%~45.2%,优于基于本地化差分隐私的联邦学习(LDP-Fed)和基于全局差分隐私的联邦学习(GDP-FL),同时满足了个性化隐私保护的需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 基于提示学习的小样本文本分类方法
    于碧辉, 蔡兴业, 魏靖烜
    《计算机应用》唯一官方网站    2023, 43 (9): 2735-2740.   DOI: 10.11772/j.issn.1001-9081.2022081295
    摘要906)   HTML78)    PDF (884KB)(896)    收藏

    文本分类任务通常依赖足量的标注数据,针对低资源场景下的分类模型在小样本上的过拟合问题,提出一种基于提示学习的小样本文本分类方法BERT-P-Tuning。首先,利用预训练模型BERT(Bidirectional Encoder Representations from Transformers)在标注样本上学习到最优的提示模板;然后,在每条样本中补充提示模板和空缺,将文本分类任务转化为完形填空任务;最后,通过预测空缺位置概率最高的词并结合它与标签之间的映射关系得到最终的标签。在公开数据集FewCLUE上的短文本分类任务上进行实验,实验结果表明,所提方法相较于基于BERT微调的方法在评价指标上有显著提高。所提方法在二分类任务上的准确率与F1值分别提升了25.2和26.7个百分点,在多分类任务上的准确率与F1值分别提升了6.6和8.0个百分点。相较于手动构建模板的PET(Pattern Exploiting Training)方法,所提方法在两个任务上的准确率分别提升了2.9和2.8个百分点,F1值分别提升了4.4和4.2个百分点,验证了预训练模型应用在小样本任务的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 基于语言模型词嵌入和注意力机制的敏感信息检测方法
    黄诚, 赵倩锐
    《计算机应用》唯一官方网站    2022, 42 (7): 2009-2014.   DOI: 10.11772/j.issn.1001-9081.2021050877
    摘要883)   HTML47)    PDF (973KB)(445)    收藏

    针对基于关键词字符匹配和短语级情感分析等传统敏感信息检测方法准确率低和泛化性差的问题,提出了一种基于语言模型词嵌入和注意力机制(A-ELMo)的敏感信息检测方法。首先,进行字典树快速匹配,以最大限度地减少无用字符的比较,从而极大地提高查询效率;其次,构建了一个语言模型词嵌入模型(ELMo)进行语境分析,并通过动态词向量充分表征语境特征,从而实现较高的可扩展性;最后,结合注意力机制加强模型对敏感特征的识别度,从而进一步提升对敏感信息的检测率。在由多个网络数据源构成的真实数据集上进行实验,结果表明,所提敏感信息检测方法与基于短语级情感分析的方法相比,准确率提升了13.3个百分点;与基于关键字匹配的方法相比,准确率提升了43.5个百分点,充分验证了所提方法在加强敏感特征识别度、提高敏感信息检测率方面的优越性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 面向小目标的YOLOv5安全帽检测算法
    吕宗喆, 徐慧, 杨骁, 王勇, 王唯鉴
    《计算机应用》唯一官方网站    2023, 43 (6): 1943-1949.   DOI: 10.11772/j.issn.1001-9081.2022060855
    摘要860)   HTML51)    PDF (3099KB)(596)    收藏

    安全帽的佩戴是工人人身安全的有力保障。针对采集的安全帽佩戴图像目标密集、像素点小、检测难度大的特点,提出一种面向安全帽的YOLOv5小目标检测算法。首先,基于YOLOv5算法优化边界框回归损失函数和置信度预测损失函数的计算方式,以提高算法在训练中对密集小目标特征的学习效果;然后,引入切片辅助微调和切片辅助推理(SAHI)对输入网络的图像进行切片处理,使得小目标对象产生更大的像素区域,进而改善网络推理与微调的效果。实验采用了工业场景中包含密集安全帽小目标的数据集进行训练。实验结果表明,改进后的算法相较于原始YOLOv5算法能将精确率提升0.26个百分点,召回率提升0.38个百分点;并且所提算法的平均精确率均值(mAP)达到了95.77%,相较于原始YOLOv5算法等几种算法提升了0.46~13.27个百分点。结果验证了切片辅助微调和SAHI的引入可以提升密集场景下小目标检测识别的精确率和置信度,减少误检漏检的情况,有效满足安全帽佩戴检测的需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 交互式机器翻译综述
    廖兴滨, 秦小林, 张思齐, 钱杨舸
    《计算机应用》唯一官方网站    2023, 43 (2): 329-334.   DOI: 10.11772/j.issn.1001-9081.2021122067
    摘要854)   HTML99)    PDF (1870KB)(541)    收藏

    随着深度学习的发展和成熟,神经机器翻译的质量也越来越高,然而仍不完美,为了达到可接受的翻译效果,需要人工进行后期编辑。交互式机器翻译(IMT)是这种串行工作的一个替代,即在翻译过程中进行人工互动,由用户对翻译系统产生的候选翻译进行验证,并且,如有必要,由用户提供新的输入,系统根据用户当前的反馈生成新的候选译文,如此往复,直到产生一个使用户满意的输出。首先,介绍了IMT的基本概念以及当前的研究进展;然后,分类对一些常用方法和前沿工作加以介绍,并简述每个工作的背景和创新之处;最后,探讨了IMT的发展趋势和研究难点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    31. 基于改进YOLOv4的轻量化目标检测算法
    钟志峰, 夏一帆, 周冬平, 晏阳天
    《计算机应用》唯一官方网站    2022, 42 (7): 2201-2209.   DOI: 10.11772/j.issn.1001-9081.2021050734
    摘要847)   HTML28)    PDF (5719KB)(514)    收藏

    针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    32. 运动想象脑电信号的跨被试动态多域对抗学习方法
    曹铉, 罗天健
    《计算机应用》唯一官方网站    2024, 44 (2): 645-653.   DOI: 10.11772/j.issn.1001-9081.2023030286
    摘要842)   HTML16)    PDF (3364KB)(237)    收藏

    解码运动想象脑电(EEG)信号是构造脑机接口(BCI)的关键技术之一。然而,脑电样本采集成本高、个体差异大,且信号具有时变性强、低信噪比等特点,构建跨被试模式识别方法成为了研究的关键。为此,提出一种跨被试动态多域对抗学习方法。首先采用样本协方差对齐和全局域鉴别器适应样本集边缘分布,随后采用多个类别子域鉴别器适应样本集条件分布,并自适应学习多域鉴别器的对抗系数。基于动态多域对抗学习策略,所提出的动态多域对抗网络(DMDAN)模型可学习到被试域间有泛化能力的深度特征。在BCI Competition IV 2A和2B公开数据集上的实验结果表明,DMDAN模型提高了跨被试域不变特征的学习能力,与现有对抗学习方法DRDA(Deep Representation Domain Adaptation)相比,在数据集2A和数据集2B上的平均分类准确率分别提高了1.80和2.52个百分点。可见,所提出的DMDAN模型提升了跨被试运动想象脑电信号解码性能,在不同数据集上具有不错的泛化性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    33. 基于深度学习的RGB图像目标位姿估计综述
    王一, 谢杰, 程佳, 豆立伟
    《计算机应用》唯一官方网站    2023, 43 (8): 2546-2555.   DOI: 10.11772/j.issn.1001-9081.2022071022
    摘要803)   HTML37)    PDF (858KB)(623)    收藏

    6自由度(DoF)位姿估计是计算机视觉与机器人技术中的一项关键技术,它能从给定的输入图像中估计物体的6DoF位姿,即3DoF平移和3DoF旋转,已经成为机器人操作、自动驾驶、增强现实等领域中的一项至关重要的任务。首先,介绍了6DoF位姿的概念以及基于特征点对应、基于模板匹配、基于三维特征描述符等传统方法存在的问题;然后,以基于特征对应、基于像素投票、基于回归和面向多物体实例、面向合成数据、面向类别级的不同角度详细介绍了当前主流的基于深度学习的6DoF位姿估计算法,归纳整理了在位姿估计方面常用的数据集以及评价指标,并对部分算法进行了实验性能评价;最后,给出了当前位姿估计面临的挑战和未来的重点研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    34. 基于注意力机制的轻量型人体姿态估计
    李坤, 侯庆
    《计算机应用》唯一官方网站    2022, 42 (8): 2407-2414.   DOI: 10.11772/j.issn.1001-9081.2021061103
    摘要793)   HTML63)    PDF (876KB)(414)    收藏

    针对高分辨率人体姿态估计网络存在参数量大、运算复杂度高等问题,提出一种基于高分辨率网络(HRNet)的轻量型沙漏坐标注意力网络(SCANet)用于人体姿态估计。首先引入沙漏(Sandglass)模块和坐标注意力(CoordAttention)模块;然后在此基础上构建了沙漏坐标注意力瓶颈(SCAneck)模块和沙漏坐标注意力基础 (SCAblock)模块两种轻量型模块,在降低模型参数量和运算复杂度的同时,获取特征图空间方向的长程依赖和精确位置信息。实验结果显示,在相同图像分辨率和环境配置的情况下,在COCO(Common Objects in COntext)校验集上,SCANet模型与HRNet模型相比参数量降低了52.6%,运算复杂度降低了60.6%;在MPII(Max Planck Institute for Informatics)校验集上,SCANet模型与HRNet模型相比参数量和运算复杂度分别降低了52.6%和61.1%;与常见的人体姿态估计网络如堆叠沙漏网络(Hourglass)、级联金字塔网络(CPN)和SimpleBaseline相比,SCANet模型在拥有更少的参数量与运算复杂度的情况下,仍能实现对人体关键点的高准确度预测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    35. 基于改进PP-YOLO和Deep-SORT的多无人机实时跟踪算法
    马峻, 姚震, 徐翠锋, 陈寿宏
    《计算机应用》唯一官方网站    2022, 42 (9): 2885-2892.   DOI: 10.11772/j.issn.1001-9081.2021071146
    摘要790)   HTML18)    PDF (2914KB)(632)    收藏

    无人机(UAV)目标尺寸较小,多架无人机之间特征也不明显,且鸟类和飞虫的干扰给无人机目标的准确检测和稳定跟踪带来了巨大挑战。针对传统目标检测算法对小目标无人机检测性能差、跟踪不稳定的问题,提出一种基于改进PP-YOLO和Deep-SORT的多无人机实时跟踪算法。首先,将压缩-激励模块融入PP-YOLO检测算法中,以实现对无人机目标的特征提取和检测;其次,在ResNet50-vd结构中引入Mish激活函数,以解决反向传播过程中的梯度消失问题,并进一步提升检测精度;然后,采用Deep-SORT算法来实时跟踪无人机目标,并将提取外观特征的主干网络更换为ResNet50,从而改善原有网络对微小外观感知能力弱的状况;最后,引入损失函数Margin Loss,既提高了类别可分性,又加强了类内紧度和类间差异。实验结果表明,所提算法的检测平均精度均值(mAP)相比原始PP-YOLO算法提升了2.27个百分点,跟踪准确性相对于原始Deep-SORT算法提升了4.5个百分点。所提算法的跟踪准确性可达91.6%,能够实时跟踪600 m以内多架无人机目标,有效解决了跟踪过程中的“丢帧”问题。

    图表 | 参考文献 | 相关文章 | 多维度评价
    36. 布隆过滤器研究综述
    华文镝, 高原, 吕萌, 谢平
    《计算机应用》唯一官方网站    2022, 42 (6): 1729-1747.   DOI: 10.11772/j.issn.1001-9081.2021061392
    摘要780)   HTML45)    PDF (3209KB)(339)    收藏

    布隆过滤器(BF)是一种基于哈希策略的二进制向量数据结构,凭借分摊哈希碰撞的思想、存在单向误判性的特点以及极小常数查询时间复杂度,常用于表示集合元素并作为进行集合元素查询操作的“加速器”。作为计算机工程中解决集合元素查询问题最好的数学工具,BF在网络工程、存储系统、数据库、文件系统、分布式系统等领域得到了广泛的应用和发展。近几年来,为了适用于各种硬件环境和应用场景,BF出现了大量基于改变结构、优化算法等思想的变种方案。随着大数据时代的发展,对BF自身特点和操作逻辑进行改进已经成为现有集合元素查询研究的一个重要方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    37. 计算机视觉中的终身学习综述
    陈一驰, 陈斌
    《计算机应用》唯一官方网站    2023, 43 (6): 1785-1795.   DOI: 10.11772/j.issn.1001-9081.2022050766
    摘要779)   HTML77)    PDF (2053KB)(1091)    收藏

    终身学习(LLL)作为一种新兴方法打破了传统机器学习的局限性,并赋予了模型能够像人类一样在学习过程中不断积累、优化并转移知识的能力。近年来,随着深度学习的广泛应用,越来越多的研究致力于解决深度神经网络中出现的灾难性遗忘问题和摆脱稳定性-可塑性困境,并将LLL方法应用于各种各样的实际场景中,以推进人工智能由弱向强的发展。针对计算机视觉领域,首先,在图像分类任务中将LLL方法归纳为四大类型:基于数据驱动的方法、基于优化过程的方法、基于网络结构的方法和基于知识组合的方法;然后,介绍了LLL方法在其他视觉任务中的典型应用和相关评估指标;最后,针对现阶段LLL方法的不足之处进行讨论并提出了LLL方法未来发展的方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    38. 基于YOLOv5的雾霾天气下交通标志识别模型
    尹靖涵, 瞿绍军, 姚泽楷, 胡玄烨, 秦晓雨, 华璞靖
    《计算机应用》唯一官方网站    2022, 42 (9): 2876-2884.   DOI: 10.11772/j.issn.1001-9081.2021071305
    摘要771)   HTML44)    PDF (3770KB)(582)    收藏

    针对雾霾、雨雪等恶劣天气下小型交通标志识别精度低、漏检严重的问题,提出一种基于YOLOv5的雾霾天气下交通标志识别模型。首先,对YOLOv5的结构进行优化,采用逆向思维,通过削减特征金字塔深度、限制最高下采样倍数来解决小目标难以识别的问题,并通过调整残差模块的特征传递深度来抑制背景特征的重复叠加;其次,引入数据增强、K-means先验框、全局非极大值抑制(GNMS)等机制到模型;最后,在中国交通标志数据集TT100K上验证改进YOLOv5模型在面对恶劣天气时的检测能力,并对精度下降最显著的雾霾天气下的交通标志识别展开了重点研究。实验结果表明,改进YOLOv5模型的F1-score达0.921 50,平均精度均值@0.5 (mAP@0.5)达95.3%,平均精度均值@0.5:0.95 (mAP@0.5:0.95)达75.2%,且所提模型在恶劣天气下仍能进行交通标志的高精度识别,每秒检测帧数(FPS)达到50,满足实时检测的需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    39. 在线学习资源推荐综述
    董永峰, 王雅琮, 董瑶, 邓亚晗
    《计算机应用》唯一官方网站    2023, 43 (6): 1655-1663.   DOI: 10.11772/j.issn.1001-9081.2022091335
    摘要771)   HTML70)    PDF (824KB)(557)    收藏

    近年来越来越多的学校广泛使用网络在线授课,然而互联网中海量的学习资源令学习者难以抉择。因此,研究在线学习资源推荐并为学习者进行个性化推荐非常重要,这可以帮助学习者快速获取其所需的优质学习资源。针对在线学习资源推荐的研究现状,从以下5个方面进行分析总结。首先,总结了目前国内外在线教育平台在学习资源推荐方面的工作;其次,分析和探讨了以知识点习题、学习路径、学习视频和学习课程为学习资源推荐目标的4种算法;接着,分别从学习者和学习资源的角度出发,以具体的算法为例,详述了常用的基于学习者画像、基于学习者行为和基于学习资源本体的3种学习资源推荐算法;此外,总结了公开的在线学习资源数据集;最后,分析了学习资源推荐系统目前存在的问题和未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    40. 基于图神经网络和注意力的双模态情感识别方法
    李路宝, 陈田, 任福继, 罗蓓蓓
    《计算机应用》唯一官方网站    2023, 43 (3): 700-705.   DOI: 10.11772/j.issn.1001-9081.2022020216
    摘要766)   HTML56)    PDF (1917KB)(619)    收藏

    针对生理信号情感识别问题,提出一种基于图神经网络(GNN)和注意力的双模态情感识别方法。首先,使用GNN对脑电(EEG)信号进行分类;然后,使用基于注意力的双向长短期记忆(Bi-LSTM)网络对心电(ECG)信号进行分类;最后,通过Dempster-Shafer证据理论融合EGG和ECG分类结果,从而提高情感识别任务的综合性能。为验证所提方法的有效性,邀请20名受试者参与情感激发实验,并收集了受试者的EGG、ECG信号。实验结果表明,所提方法的二分类准确率在valence维度和arousal维度分别为91.82%和88.24%,相较于单模态EEG方法分别提高2.65%和0.40%,相较于单模态ECG方法分别提高19.79%和24.90%。可见,所提方法能够有效地提高情感识别的准确率,为医疗诊断等领域提供决策支持。

    图表 | 参考文献 | 相关文章 | 多维度评价
2025年 45卷 4期
刊出日期: 2025-04-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会