摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 一年内发表文章
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 大语言模型的技术应用前景与风险挑战
    徐月梅, 胡玲, 赵佳艺, 杜宛泽, 王文清
    《计算机应用》唯一官方网站    2024, 44 (6): 1655-1662.   DOI: 10.11772/j.issn.1001-9081.2023060885
    摘要1280)   HTML102)    PDF (1142KB)(2305)    收藏

    针对大语言模型(LLM)技术的快速发展,剖析它的技术应用前景和风险挑战,对通用人工智能(AGI)的发展和治理有重要参考价值。首先,以Multi-BERT(Multilingual Bidirectional Encoder Representations from Transformers)、GPT(Generative Pre-trained Transformer)和ChatGPT(Chat Generative Pre-Trained Transformer)等语言模型为代表,综述LLM的发展脉络、核心技术和评估体系;其次,分析LLM现存的技术局限和安全风险;最后,提出LLM在技术上改进、政策上跟进的建议。分析指出作为发展阶段的LLM,现有模型存在非真实性及偏见性输出、实时自主学习能力欠缺,算力需求庞大,对数据质量和数量依赖性强,语言风格单一;存在数据隐私、信息安全和伦理等方面的安全风险。未来发展可从技术上继续改进,从“大规模”转向“轻量化”、从“单模态”走向“多模态”、从“通用”迈入“垂类”;从政策上实时跟进,实施有针对性的监管措施,规范应用和发展。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. YOLO算法及其在自动驾驶场景中目标检测综述
    邓亚平, 李迎江
    《计算机应用》唯一官方网站    2024, 44 (6): 1949-1958.   DOI: 10.11772/j.issn.1001-9081.2023060889
    摘要993)   HTML42)    PDF (1175KB)(881)    收藏

    自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You Only Look Once)算法在自动驾驶领域中的目标检测研究现状,从以下4个方面分析。首先,总结单阶段YOLO系列检测算法思想及其改进方法,分析YOLO系列算法的优缺点;其次,论述YOLO算法在自动驾驶场景下目标检测中的应用,从交通车辆、行人和交通信号识别这3个方面分别阐述和总结研究现状及应用情况;此外,总结目标检测中常用的评价指标、目标检测数据集和自动驾驶场景数据集;最后,展望目标检测存在的问题和未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 不完整多视图聚类综述
    董瑶, 付怡雪, 董永峰, 史进, 陈晨
    《计算机应用》唯一官方网站    2024, 44 (6): 1673-1682.   DOI: 10.11772/j.issn.1001-9081.2023060813
    摘要636)   HTML19)    PDF (2050KB)(590)    收藏

    多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的发展具有重要的理论意义和实践价值。首先,归纳分析不完整多视图数据缺失类型;其次,详细比较基于多核学习(MKL)、矩阵分解(MF)学习、深度学习和图学习这4类IMC方法,分析代表性方法的技术特点和区别;再次,从数据集类型、视图和类别数量、应用领域等角度总结22个公开不完整多视图数据集;继次,总结评价指标,并系统分析现有不完整多视图聚类方法在同构和异构数据集上的性能表现;最后,归纳分析不完整多视图聚类目前存在的问题、未来的发展方向和现有应用领域。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 超图应用方法综述:问题、进展与挑战
    曾蠡, 杨婧如, 黄罡, 景翔, 罗超然
    《计算机应用》唯一官方网站    2024, 44 (11): 3315-3326.   DOI: 10.11772/j.issn.1001-9081.2023111629
    摘要605)   HTML24)    PDF (795KB)(364)    收藏

    超图是图的泛化,相较于普通图,它在复杂关系的高阶特征表达上具有显著优势。作为一种相对较新的数据结构,超图在应用领域正在发挥越来越大的作用,研究者采用超图模型及算法对现实世界中的具体问题进行建模、求解,有效地提升了解决问题的效率及质量。现有对超图的综述更多侧重于解决超图本身问题的理论及技术,缺乏对超图在具体应用场景下的建模及求解方法的归纳总结。为此,在总结介绍超图的一些基础概念后,分析了超图在各个主流应用场景下的应用方法、技术、共性问题及解决方案;通过对现有工作的归纳总结,阐述了超图运用于现实问题中仍然存在的一些问题与障碍;最后,对超图应用的未来研究方向进行了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 大语言模型综述与展望
    秦小林, 古徐, 李弟诚, 徐海文
    《计算机应用》唯一官方网站    2025, 45 (3): 685-696.   DOI: 10.11772/j.issn.1001-9081.2025010128
    摘要583)   HTML44)    PDF (2035KB)(478)    收藏

    大语言模型(LLM)是由具有大量参数(通常数十亿个权重或更多)的人工神经网络组成的一类语言模型,使用自监督学习或半监督学习对大量未标记文本进行训练,是当前生成式人工智能(AI)技术的核心。与传统语言模型相比,LLM通过大量的算力、参数和数据支持,展现出更强的语言理解与生成能力,广泛应用于机器翻译、问答系统、对话生成等众多任务中并表现卓越。现有的综述大多侧重于LLM的理论架构与训练方法,对LLM的产业级应用实践及技术生态演进的系统性探讨仍显不足。因此,在介绍LLM的基础架构、训练技术及发展历程的基础上,分析当前通用的LLM关键技术和以LLM为底座的先进融合技术。通过归纳总结现有研究,进一步阐述LLM在实际应用中面临的挑战,包括数据偏差、模型幻觉和计算资源消耗等问题,并对LLM的持续发展趋势进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 知识图谱在装备故障诊断领域的研究与应用综述
    武杰, 张安思, 吴茂东, 张仪宗, 王从宝
    《计算机应用》唯一官方网站    2024, 44 (9): 2651-2659.   DOI: 10.11772/j.issn.1001-9081.2023091280
    摘要526)   HTML52)    PDF (2858KB)(814)    收藏

    知识图谱从装备故障诊断数据中提取有用的知识,通过(实体,关系,实体)的三元组方式,对复杂装备的故障诊断信息进行有效管理,实现装备故障的快速诊断。首先,介绍装备故障诊断知识图谱的相关概念,分析装备故障诊断领域知识图谱的构建框架;其次,归纳国内外装备故障诊断知识图谱的知识抽取、知识融合以及知识推理等几个关键技术的研究现状;最后,对目前装备故障诊断知识图谱应用进行总结,提出该领域知识图谱构建的不足和面临的挑战,并对未来装备故障诊断领域提供一些新的思路。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基于改进YOLOv8的水下目标检测算法
    李大海, 李冰涛, 王振东
    《计算机应用》唯一官方网站    2024, 44 (11): 3610-3616.   DOI: 10.11772/j.issn.1001-9081.2023111550
    摘要507)   HTML16)    PDF (1637KB)(142)    收藏

    由于水下生物的特性,水下图像中存在较多难以检测的小目标,且目标之间经常相互遮挡,而水下环境中的光线吸收和散射也会造成水下图像的颜色偏移和模糊。针对上述问题,提出水下目标检测算法WCA-YOLOv8。首先,设计特征融合模块(FFM),增强对空间维度信息的关注,提升对模糊和颜色偏移目标的识别能力;其次,加入FCA(FReLU Coordinate Attention)模块,增强对相互重叠、遮挡水下目标的特征提取能力;再次,为了提高模型对水下小目标的检测性能,将完整交并比(CIoU)损失函数替换为WIoU v3(Wise-IoU version 3)损失函数;最后,设计下采样增强模块(DEM),使特征提取过程中保存的上下文信息更完整,改善水下目标检测的性能。RUOD和URPC数据集上的实验结果表明,WCA-YOLOv8的检测平均精度均值(mAP0.5)分别为75.8%和88.6%,检测速度分别为60 frame/s和57 frame/s。与其他前沿的水下物体检测算法相比,WCA-YOLOv8不仅能够获得更高的检测准确性,还可达到更快的检测速度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 区块链3.0的发展、技术与应用
    方鹏, 赵凡, 王保全, 王轶, 蒋同海
    《计算机应用》唯一官方网站    2024, 44 (12): 3647-3657.   DOI: 10.11772/j.issn.1001-9081.2023121826
    摘要491)   HTML39)    PDF (2294KB)(334)    收藏

    区块链3.0是区块链技术发展的第3阶段,也是构建价值互联网的内核,它在分片、跨链以及隐私保护等方面的创新使它具有广泛的应用场景和研究价值,受到学术界和产业界相关人士的高度重视。针对区块链3.0的发展、技术与应用,调研并综述近5年国内外关于区块链3.0的相关文献。首先,介绍区块链的基本理论和技术特点,为深入了解区块链的研究进展奠定基础;其次,根据区块链技术随时间变化的演进趋势,阐述区块链3.0的发展历程和各个关键的发展时间节点,并给出以分片和侧链技术为基准点划分区块链不同的发展阶段的理由;再次,详细分析区块链3.0关键技术的研究现状,概述归纳它在物联网、医疗和农业等6大领域内的典型应用;最后,总结区块链3.0在发展过程中面临的关键性挑战和未来发展机遇。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于改进YOLOv5的Logo检测算法
    李烨恒, 罗光圣, 苏前敏
    《计算机应用》唯一官方网站    2024, 44 (8): 2580-2587.   DOI: 10.11772/j.issn.1001-9081.2023081113
    摘要482)   HTML9)    PDF (4682KB)(436)    收藏

    针对Logo图像背景复杂、Logo目标尺寸多变的问题,提出了一种基于YOLOv5的改进检测算法。首先,结合CBAM(Channel Block Attention Module),分别在图像通道与空间方向进行压缩,提取图像的关键信息与重要区域;然后,使用可变空洞卷积(SAC)使网络在不同尺度下自适应地调整特征图中的感受野大小,以捕获不同尺度下的物体信息,改善网络对多尺度目标的检测效果;最后,将归一化Wasserstein距离(NWD)嵌入损失函数,将边界框建模成2D的高斯分布,计算对应的高斯分布之间的相似度,更好地度量目标之间的相似性,提高对小目标的检测性能与模型鲁棒性和稳定性。实验结果表明,在数据量较小的数据集FlickrLogos-32中,改进后算法的平均精度均值(mAP@0.5)达到90.6%,比原始YOLOv5算法提升了1个百分点;在数据量较大的数据集QMULOpenLogo中,改进后算法的mAP@0.5达到62.7%,比原始YOLOv5算法提升了2.3个百分点;在针对特定类型的Logo检测集LogoDet3K中,针对3类商标改进后算法比原始算法的mAP@0.5分别提升了1.2、1.4与1.4个百分点,说明它有更好的Logo图像小目标检测能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 时频域多尺度交叉注意力融合的时间序列分类方法
    王美, 苏雪松, 刘佳, 殷若南, 黄珊
    《计算机应用》唯一官方网站    2024, 44 (6): 1842-1847.   DOI: 10.11772/j.issn.1001-9081.2023060731
    摘要454)   HTML10)    PDF (2511KB)(782)    收藏

    针对时间序列子序列间的潜在信息交互不足导致分类准确率低的问题,提出时频域多尺度交叉注意力融合的时间序列分类方法TFFormer(Time-Frequency Transformer)。首先,将原始时间序列的时频域谱分别划分为等长子序列,经线性投影后加入位置信息解决时间序列的点值耦合问题;其次,通过改进的多头自注意力(IMHA)模块使模型关注更重要的序列特征,解决长时间序列的前后依赖问题;最后,构造多尺度时频域交叉注意力(CMA)模块增强时间序列在时域和频域之间的信息交互,使模型进一步挖掘序列的频域信息。实验结果表明,在Trace、StarLightCurves和UWaveGestureLibraryAll数据集上,相较于全卷积网络(FCN),所提方法的分类准确率分别提高了0.3、0.9和1.4个百分点,验证了通过增强时间序列时域和频域间的信息交互,可以提高模型收敛速度和分类精度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 基于改进YOLOv8n的无人机视角下小目标检测算法
    刘涛, 鞠事宏, 高一萌
    《计算机应用》唯一官方网站    2024, 44 (11): 3603-3609.   DOI: 10.11772/j.issn.1001-9081.2023111644
    摘要433)   HTML13)    PDF (1561KB)(255)    收藏

    针对目标检测算法在无人机视角下的小目标检测中精度低的问题,通过改进YOLOv8的骨干网络与注意力机制,提出一种新的小目标检测算法SFM-YOLOv8。首先,在骨干网络中融入适用于低分辨率图像和小物体检测的空间深度转换卷积(SPDConv),保留判别特征信息,提高小目标感知能力;其次,插入多分支注意力MCA(Multiple Coordinate Attention),加强提取特征层的空间信息和通道信息;然后,构建一种融合FasterNet和高效多尺度注意力(EMA)的卷积FE-C2f,减少计算量并使模型轻量化;此外,引入边界框相似度比较度量(MPDIoU)损失函数提高算法精度;最后,在YOLOv8n的网络结构中增加小目标检测层,保留更多关于小目标的位置信息和细节特征。实验结果表明,与YOLOv8n相比,SFM-YOLOv8算法在VisDrone-DET2019数据集上的平均精度均值mAP50提高了4.37个百分点,参数量减少了5.98%;与相关主流模型对比,精度也有所提升,且满足实时检测需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 非线性时间一致性的相关滤波目标跟踪
    姜文涛, 李宛宣, 张晟翀
    《计算机应用》唯一官方网站    2024, 44 (8): 2558-2570.   DOI: 10.11772/j.issn.1001-9081.2023081121
    摘要424)   HTML3)    PDF (7942KB)(82)    收藏

    针对现有目标跟踪算法主要采用线性约束机制LADCF(Learning Adaptive Discriminative Correlation Filters)跟踪模型容易漂移的问题,提出非线性时间一致性的相关滤波目标跟踪算法。首先,结合史蒂文斯定律,提出贴近人类视觉感知特性的非线性时间一致项,使模型相对平滑地跟踪目标,从而保证跟踪连续性,避免跟踪模型漂移;其次,采用交替方向乘子法(ADMM)求解最优函数值,保证算法的跟踪实时性;最后,利用史蒂文斯定律非线性更新滤波器,使滤波器更新因子可以根据目标的变化增强和抑制滤波器,以适应目标变化,防止滤波器退化。在4个标准数据集上与主流相关滤波和深度学习算法对比实验,相较于基线算法LADCF,所提算法的跟踪精确度和成功率在OTB100数据集上分别提升了2.4和3.8个百分点;在UAV123上分别提升了1.5和2.5个百分点。实验结果表明,所提算法能有效避免跟踪模型漂移,降低滤波器退化概率,跟踪精确度和成功率较高,面对遮挡、光照变化等复杂场景时具有较强的鲁棒性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于深度强化学习的移动机器人三维路径规划方法
    马天, 席润韬, 吕佳豪, 曾奕杰, 杨嘉怡, 张杰慧
    《计算机应用》唯一官方网站    2024, 44 (7): 2055-2064.   DOI: 10.11772/j.issn.1001-9081.2023060749
    摘要406)   HTML29)    PDF (5732KB)(939)    收藏

    针对三维未知环境中存在的高复杂度和不确定性的问题,提出一种在有限观测空间优化策略下基于深度强化学习的移动机器人三维路径规划方法。首先,在有限观测空间下采用深度图信息作为智能体的输入,模拟移动受限且未知的复杂三维空间环境;其次,设计了两阶段离散动作空间下的动作选择策略,包括方向动作和位移动作,以减少搜索步数和时间;最后,在近端策略优化(PPO)算法基础上,添加门控循环单元(GRU)结合历史状态信息,以提升未知环境中搜索策略的稳定性,进而提高规划路径准确度和平滑度。实验结果表明,相较于A2C(Advantage Actor-Critic),所提方法的平均搜索时间缩短了49.07%,平均规划路径长度缩短了1.04%,同时能够完成线性时序逻辑约束下的多目标路径规划任务。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 融合1D-CNN与BiGRU的类不平衡流量异常检测
    陈虹, 齐兵, 金海波, 武聪, 张立昂
    《计算机应用》唯一官方网站    2024, 44 (8): 2493-2499.   DOI: 10.11772/j.issn.1001-9081.2023081112
    摘要377)   HTML2)    PDF (1194KB)(818)    收藏

    网络流量异常检测是利用各种检测技术分析判断网络流量,发现网络中潜在的攻击,是一种有效的网络安全防护方法。针对高维海量数据和不同攻击类别的网络流量数据不均衡而导致检测准确率低、误报率高的问题,提出一种融合一维卷积神经网络(1D-CNN)和双向门控循环单元(BiGRU)的类不平衡流量异常检测模型。首先,针对类不平衡数据,通过使用改进的合成少数类过采样技术(SMOTE)即Borderline-SMOTE和基于高斯混合模型(GMM)的欠采样聚类技术进行平衡处理;然后,使用1D-CNN提取数据的局部特征,并利用BiGRU更好地提取数据中的时序特征;最后,在UNSW-NB15数据集对所提模型进行验证,所提模型的准确率为98.12%,误报率为1.28%。结果表明,所提模型提高了对少数攻击的识别率,检测精度高于其他经典机器学习和深度学习模型。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 生成式标签对抗的文本分类模型
    姚迅, 秦忠正, 杨捷
    《计算机应用》唯一官方网站    2024, 44 (6): 1781-1785.   DOI: 10.11772/j.issn.1001-9081.2023050662
    摘要370)   HTML15)    PDF (1142KB)(446)    收藏

    文本分类是自然语言处理(NLP)中的一项基础任务,目的是将文本数据分配至预先定义的类别。图卷积神经网络(GCN)与大规模的预训练模型BERT(Bidirectional Encoder Representations from Transformer)的结合在文本分类任务中取得了良好的效果。大规模异构图中GCN的无向的信息传递产生信息噪声影响模型的判断,造成模型分类能力下降,针对这一问题,提出一种生成式标签对抗模型,即类对抗图卷积网络(CAGCN)模型,以降低分类时无关信息的干扰,提升模型的分类性能。首先,采用TextGCN(Text Graph Convolutional Network)中的构图法构建邻接矩阵,结合GCN和BERT模型作为类生成器(CG);其次,在模型训练时采用伪标签特征训练法,并构建聚类器与类生成器联合训练;最后,在多个广泛使用的数据集上进行实验。实验结果表明,在泛用的分类数据集20NG、R8、R52、Ohsumed和MR上,CAGCN模型的分类准确率比RoBERTaGCN模型分别提高了1.2、0.1、0.5、1.7和0.5个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 基于双流神经网络的个性化联邦学习方法
    沈哲远, 杨珂珂, 李京
    《计算机应用》唯一官方网站    2024, 44 (8): 2319-2325.   DOI: 10.11772/j.issn.1001-9081.2023081207
    摘要367)   HTML54)    PDF (2185KB)(239)    收藏

    经典的联邦学习(FL)算法在数据高度异构的场景下难以取得较好的效果。个性化联邦学习(PFL)针对数据异构问题,提出新的解决方案,即为每个客户端“量身定做”专属模型,这样模型会拥有较好的性能;然而同时会引出难以将FL扩展到新客户端上的问题。针对PFL中的性能与扩展的难题展开研究,提出基于双流神经网络结构的联邦学习模型,简称FedDual。双流神经网络模型通过增加一个用于分析客户端个性化特征的编码器,既能拥有个性化模型的性能,又便于扩展到新客户端。实验结果表明,相较于经典联邦平均(FedAvg)算法,FedDual在MNIST和FashionMNIST等数据集上的准确率有明显提升,而在CIFAR10数据集上的准确率提升了10个百分点以上,且面对新客户端保持准确率不下降,实现了“即插即用”,解决了新客户端难以扩展的问题。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 面向轻量化的改进YOLOv7棉杂检测算法
    张勇进, 徐健, 张明星
    《计算机应用》唯一官方网站    2024, 44 (7): 2271-2278.   DOI: 10.11772/j.issn.1001-9081.2023070969
    摘要364)   HTML13)    PDF (8232KB)(346)    收藏

    针对棉纺厂原棉吞吐量大、检测时间长而常见卷积神经网络无法实现高实时检测的问题,提出基于轻量化改进的YOLOv7模型对原棉杂质的检测算法,旨在快速高效地对棉杂质进行检测。首先通过删减YOLOv7模型冗余的卷积层从而提高检测速度;其次在主干网络内添加FasterNet卷积降低模型的计算负担,减少特征图的冗余性,实现高实时检测;最后在颈部网络内运用CSP-RepFPN(Cross Stage Partial networks with Replicated Feature Pyramid Network)重构特征金字塔,增加特征信息流通,减少特征损失,提高检测精度。实验结果表明:在自建棉杂数据集上改进的YOLOv7模型在棉杂检测精度上达到了96.0%,检测时间比YOLOv7减少了37.5%;在公开DWC(Drinking Waste Classification)数据集上整体精度达到82.5%,检测时间仅为29.8 ms。改进的YOLOv7模型能够为原棉杂质的实时检测和识别分类提供一种轻量化的检测方法,大幅节约了时间成本。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 基于裁剪优化和策略指导的近端策略优化算法
    周毅, 高华, 田永谌
    《计算机应用》唯一官方网站    2024, 44 (8): 2334-2341.   DOI: 10.11772/j.issn.1001-9081.2023081079
    摘要357)   HTML15)    PDF (3877KB)(464)    收藏

    针对近端策略优化(PPO)算法难以严格约束新旧策略的差异和探索与利用效率较低这2个问题,提出一种基于裁剪优化和策略指导的PPO(COAPG-PPO)算法。首先,通过分析PPO的裁剪机制,设计基于Wasserstein距离的信任域裁剪方案,加强对新旧策略差异的约束;其次,在策略更新过程中,融入模拟退火和贪心算法的思想,提升算法的探索效率和学习速度。为了验证所提算法的有效性,使用MuJoCo测试基准对COAPG-PPO与CO-PPO(PPO based on Clipping Optimization)、PPO-CMA(PPO with Covariance Matrix Adaptation)、TR-PPO-RB(Trust Region-based PPO with RollBack)和PPO算法进行对比实验。实验结果表明,COAPG-PPO算法在大多数环境中具有更严格的约束能力、更高的探索和利用效率,以及更高的奖励值。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 基于加强特征提取的道路病害检测算法
    龙伍丹, 彭博, 胡节, 申颖, 丁丹妮
    《计算机应用》唯一官方网站    2024, 44 (7): 2264-2270.   DOI: 10.11772/j.issn.1001-9081.2023070956
    摘要353)   HTML9)    PDF (2806KB)(583)    收藏

    针对道路病害区域小、类别数量不均衡导致检测困难的问题,提出基于YOLOv7-tiny的道路病害检测算法RDD-YOLO。首先,采用K-means++算法得到拟合目标尺寸更好的锚框。其次,在小目标检测支路上使用量化感知重参数化模块(QARepVGG),增强浅层特征提取,同时构建加强注意力模块(AM-CBAM)嵌入颈部的3个输入,抑制复杂背景干扰。然后,设计特征融合模块(Res-RFB),模拟人眼扩大感受野融合多尺度信息,提高表征能力;另外,构造轻量级解耦头(S-DeHead)提高小目标检测精确率。最后,采用归一化Wasserstein距离度量(NWD)优化小目标定位过程,并缓解样本不均衡问题。实验结果表明,与YOLOv7-tiny相比,RDD-YOLO算法在仅增加0.71×106参数量和1.7 GFLOPs计算量的成本下,mAP50提高6.19个百分点,F1-Score提高5.31个百分点,并且检测速度达到135.26 frame/s,满足道路养护工作中对检测精度和速度的需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 基于轨迹预测和分布式MADDPG的无人机集群追击决策
    王昱, 关智慧, 李远鹏
    《计算机应用》唯一官方网站    2024, 44 (11): 3623-3628.   DOI: 10.11772/j.issn.1001-9081.2023101538
    摘要348)   HTML4)    PDF (918KB)(120)    收藏

    针对复杂任务环境下无人机(UAV)集群追击决策算法灵活性不足、泛化能力差等问题,提出一种基于轨迹预测的分布式多智能体深度确定性策略梯度(TP-DMADDPG)算法。首先,为增强追击任务的真实性,为目标机设计智能化逃逸策略;其次,考虑到因通信中断等原因导致的目标机信息缺失等情况,采用长短时记忆(LSTM)网络实时预测目标机的位置信息,并基于预测信息构建决策模型的状态空间;最后,依据分布式框架和多智能体深度确定性策略梯度(MADDPG)算法设计TP-DMADDPG算法,增强复杂空战进程中集群追击决策的灵活性和泛化能力。仿真实验结果表明,相较于深度确定性策略梯度(DDPG)、双延迟深度确定性策略梯度(TD3)和MADDPG算法,TP?DMADDPG算法将协同决策的成功率提升了至少15个百分点,能够解决不完备信息下追击智能化逃逸目标机的问题。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 联邦学习中的安全威胁与防御措施综述
    陈学斌, 任志强, 张宏扬
    《计算机应用》唯一官方网站    2024, 44 (6): 1663-1672.   DOI: 10.11772/j.issn.1001-9081.2023060832
    摘要347)   HTML22)    PDF (1072KB)(670)    收藏

    联邦学习是一种用于解决机器学习中数据共享问题和隐私保护问题的分布式学习方法,旨在多方共同训练一个机器学习模型并保护数据的隐私;但是,联邦学习本身存在安全威胁,这使得联邦学习在实际应用中面临巨大的挑战,因此,分析联邦学习面临的攻击和相应的防御措施对联邦学习的发展和应用至关重要。首先,介绍联邦学习的定义、流程和分类,联邦学习中的攻击者模型;其次,从联邦学习系统的鲁棒性和隐私性两方面介绍可能遭受的攻击,并介绍不同攻击相应的防御措施,同时也指出防御方案的不足;最后,展望安全的联邦学习系统。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 基于深度强化学习的多机器人路径跟随与编队
    何浩东, 符浩, 王强, 周帅, 刘伟
    《计算机应用》唯一官方网站    2024, 44 (8): 2626-2633.   DOI: 10.11772/j.issn.1001-9081.2023081120
    摘要342)   HTML9)    PDF (3411KB)(209)    收藏

    针对多机器人在人群环境中路径跟随与编队的避障及运动轨迹平滑性问题,提出基于深度强化学习的多机器人路径跟随与编队算法。首先,建立行人危险性优先级机制,结合行人危险性优先级机制与强化学习设计危险意识网络,提高多机器人编队的安全性;然后,引入虚拟机器人作为多机器人的跟随目标,将路径跟随转化为多机器人对虚拟机器人的跟随控制,提高机器人运动轨迹的平滑性;最后,通过仿真实验将所提算法与现有算法进行对比,同时进行定量与定性分析。实验结果表明,与现有点对点的路径跟随算法相比,所提算法在人群环境下具有优异的避障性能,可保证多机器人运动轨迹的平滑性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 基于低秩分解和向量量化的深度网络压缩方法
    王东炜, 刘柏辰, 韩志, 王艳美, 唐延东
    《计算机应用》唯一官方网站    2024, 44 (7): 1987-1994.   DOI: 10.11772/j.issn.1001-9081.2023071027
    摘要333)   HTML121)    PDF (1506KB)(467)    收藏

    随着人工智能的发展,深度神经网络成为多种模式识别任务中必不可少的工具,由于深度卷积神经网络(CNN)参数量巨大、计算复杂度高,将它部署到计算资源和存储空间受限的边缘计算设备上成为一项挑战。因此,深度网络压缩成为近年来的研究热点。低秩分解与向量量化是深度网络压缩中重要的两个研究分支,其核心思想都是通过找到原网络结构的一种紧凑型表达,从而降低网络参数的冗余程度。通过建立联合压缩框架,提出一种基于低秩分解和向量量化的深度网络压缩方法——可量化的张量分解(QTD)。该方法能够在网络低秩结构的基础上实现进一步的量化,从而得到更大的压缩比。在CIFAR-10数据集上对经典ResNet和该方法进行验证的实验结果表明,QTD能够在准确率仅损失1.71个百分点的情况下,将网络参数量压缩至原来的1%。而在大型数据集ImageNet上把所提方法与基于量化的方法PQF (Permute, Quantize, and Fine-tune)、基于低秩分解的方法TDNR (Tucker Decomposition with Nonlinear Response)和基于剪枝的方法CLIP-Q (Compression Learning by In-parallel Pruning-Quantization)进行比较与分析的实验结果表明,QTD能够在相同压缩范围下实现更好的分类准确率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 课程学习指导下的半监督目标检测框架
    张英俊, 李牛牛, 谢斌红, 张睿, 陆望东
    《计算机应用》唯一官方网站    2024, 44 (8): 2326-2333.   DOI: 10.11772/j.issn.1001-9081.2023081062
    摘要331)   HTML25)    PDF (2042KB)(267)    收藏

    为了提高伪标签的质量,解决半监督目标检测(SSOD)中的确认偏差问题,并针对现有算法中忽视无标注数据复杂性导致错误伪标签的难点,提出一种课程学习(CL)指导下的SSOD框架,该框架主要由ICSD(IoU-Confidence-Standard-Deviation)难度测量器和BP(Batch-Package)训练调度器这2个模块组成。其中,ICSD难度测量器综合考虑了伪边界框之间的交并比(IoU)、置信度、类别标签等信息,并引入C_IOU(Checkpoint_IOU)方法评估无标注数据的可靠性;BP训练调度器设计2种高效调度策略,分别从Batch和Package角度出发,优先选择可靠性指标高的无标记数据,实现以CL的方式充分利用整个无标记数据集。在Pascal VOC和MS-COCO数据集上的广泛对比实验结果表明,所提框架不仅适用于现有的SSOD算法,而且检测精度和稳定性都得到显著提升。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. 基于改进实时检测Transformer的塔机上俯视场景小目标检测模型
    庞玉东, 李志星, 刘伟杰, 李天昊, 王宁宁
    《计算机应用》唯一官方网站    2024, 44 (12): 3922-3929.   DOI: 10.11772/j.issn.1001-9081.2023121796
    摘要327)   HTML8)    PDF (3128KB)(256)    收藏

    针对塔机吊钩相互碰撞导致物体跌落以及塔机倒塌致使人员伤亡等一系列施工现场人员安全保障的问题,提出一种基于改进实时检测Transformer (Real-Time DEtection TRansformer, RT-DETR)的塔机上俯视场景小目标检测模型。首先,在原始模型中加入应用模型的重参数化思想设计的多路训练和单路推理结构以提升检测速度;其次,重新设计FasterNet Block中的卷积模块替换原始BackBone之中的BasicBlock以提升检测模型性能;再次,利用新的损失函数Inner-SIoU(Inner-Structured Intersection over Union)进一步提升模型精度与收敛速度;最后,进行消融实验与对比实验验证模型性能。结果表明,在检测塔机顶部俯视小目标图像时,所提模型的精度达到94.7%,高于原始RT-DETR模型6.1个百分点;所提模型的每秒检测帧数(FPS)达到59.7,检测速度相较于原模型提升了21%。在公共数据集COCO 2017上所提模型的平均精度(AP)比YOLOv5、YOLOv7和YOLOv8分别高2.4、1.5和1.3个百分点。可见所提模型满足塔机上俯视场景下的小目标检测精度和速度的要求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 面向图神经网络模型提取攻击的图数据生成方法
    杨莹, 郝晓燕, 于丹, 马垚, 陈永乐
    《计算机应用》唯一官方网站    2024, 44 (8): 2483-2492.   DOI: 10.11772/j.issn.1001-9081.2023081110
    摘要321)   HTML3)    PDF (3213KB)(327)    收藏

    无数据模型提取攻击是基于攻击者在进行攻击时所需的训练数据信息未知的情况下提出的一类机器学习安全问题。针对无数据模型提取攻击在图神经网络(GNN)领域的研究缺乏,提出分别用GNN可解释性方法GNNExplainer和图数据增强方法GAUG-M优化图节点特征信息和边信息生成所需图数据,最终提取GNN模型的方法。首先,利用GNNExplainer方法对目标模型的响应结果进行可解释性分析得到重要的图节点特征信息;其次,通过对重要的图节点特征加权,对非重要图节点特征降权,实现图节点特征信息的整体优化;然后,使用图形自动编码器作为边信息预测模块,根据优化后的图节点特征得到节点与节点之间的连接概率;最后,根据概率增加或者删减相应边优化边信息。实验采用5个图数据集训练的3种GNN模型架构作为目标模型提取攻击,得到的替代模型达到了73%~87%的节点分类任务准确性和76%~89%的与目标模型性能的一致性,验证了所提方法的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 应对零日攻击的混合车联网入侵检测系统
    方介泼, 陶重犇
    《计算机应用》唯一官方网站    2024, 44 (9): 2763-2769.   DOI: 10.11772/j.issn.1001-9081.2023091328
    摘要321)   HTML13)    PDF (2618KB)(888)    收藏

    现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测系统。首先,设计了一种数据增强算法,通过先去除噪声再生成的方法解决了数据样本不平衡的问题;其次,将非线性特征交互引入复杂的特征组合,设计了一个特征工程模块;最后,将Transformer的自注意力机制和ANFIS的自适应学习方法相结合,以提高特征表征能力,减少对样本数据的依赖。在CICIDS-2017和UNSW-NB15入侵数据集上将所提系统与Dual-IDS等先进(SOTA)算法进行比较。实验结果表明,对于零日攻击,所提系统在CICIDS-2017入侵数据集上实现了98.64%的检测精确率和98.31%的F1值,在UNSW-NB15入侵数据集上实现了93.07%的检测精确率和92.43%的F1值,验证了所提算法在零日攻击检测方面的高准确性和强泛化能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 统一框架的增强深度子空间聚类方法
    王清, 赵杰煜, 叶绪伦, 王弄潇
    《计算机应用》唯一官方网站    2024, 44 (7): 1995-2003.   DOI: 10.11772/j.issn.1001-9081.2023101395
    摘要319)   HTML84)    PDF (3432KB)(383)    收藏

    深度子空间聚类是一种处理高维数据聚类任务的有效方法。然而,现有的深度子空间聚类方法通常将自表示学习和指标学习作为两个独立的过程,导致在处理具有挑战性的数据时,固定的自表示矩阵会导致次优的聚类结果;另外,自表示矩阵的质量对聚类结果的准确性至关重要。针对上述问题,提出一种统一框架的增强深度子空间聚类方法。首先,通过将特征学习、自表示学习和指标学习集成在一起同时优化所有参数,根据数据的特征动态地学习自表示矩阵,确保准确地捕捉数据特征;其次,为了提高自表示学习的效果,提出类原型伪标签学习,为特征学习和指标学习提供自监督信息,进而促进自表示学习;最后,为了增强嵌入表示的判别能力,引入正交性约束帮助实现自表示属性。实验结果表明,与AASSC (Adaptive Attribute and Structure Subspace Clustering network)相比,所提方法在MNIST、UMIST、COIL20数据集上的聚类准确率分别提升了1.84、0.49、0.34个百分点。可见,所提方法提高了自表示矩阵学习的准确性,聚类效果更好。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 在线教育学习者知识追踪综述
    赵雅娟, 孟繁军, 徐行健
    《计算机应用》唯一官方网站    2024, 44 (6): 1683-1698.   DOI: 10.11772/j.issn.1001-9081.2023060852
    摘要312)   HTML21)    PDF (2932KB)(3839)    收藏

    知识追踪(KT)是在线教育中一项基础且具有挑战性的任务,同时也是从学习者的学习历史中建立学习者知识状态模型的任务,可以帮助学习者更好地了解自己的知识状态,使教育者更好地了解学习者的学习情况。对在线教育学习者KT研究进行综述。首先,介绍KT的主要任务和发展历程;其次,从传统KT模型和深度学习KT模型两个方面展开叙述;再次,归纳总结相关数据集和评价指标,并汇总KT的相关应用;最后,总结KT现状,讨论它们的不足和未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 基于多尺度时空图卷积网络的交通出行需求预测
    李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清
    《计算机应用》唯一官方网站    2024, 44 (7): 2065-2072.   DOI: 10.11772/j.issn.1001-9081.2023071045
    摘要309)   HTML15)    PDF (1969KB)(325)    收藏

    满足公众高质量出行需求是智能交通系统(ITS)的主要挑战之一。目前,针对公共交通出行需求预测问题,现有模型大多采用固定结构的图描述出行需求的空间相关性,忽略了出行需求在不同尺度下具有不同的空间依赖关系。针对上述问题,提出一种多尺度时空图卷积网络(MSTGCN)模型。该模型首先从全局尺度和局部尺度构建全局需求相似图和局部需求相似图,这2种图可以捕获公共交通出行需求长期内较为稳定的全局特征和短期内动态变化的局部特征。利用图卷积网络(GCN)提取2种图中的全局空间信息和局部空间信息,并引入注意力机制融合两种空间信息。为了拟合时间序列中潜藏的时间依赖关系,利用门控循环单元(GRU)捕捉公共交通需求的时变特征。采用纽约市出租车订单数据集和自行车订单数据集进行实验,结果表明MSTGCN模型在自行车订单数据集上均方根误差(RMSE)、平均绝对误差(MAE)和皮尔逊相关系数(PCC)达2.788 6、1.737 1、0.799 2,在出租车订单数据集上RMSE、MAE、PCC达9.573 4、5.861 2、0.963 1。可见,MSTGCN模型可以有效地挖掘公共交通出行需求的多尺度时空特性,对未来公共交通出行需求进行准确预测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    31. 基于自注意力融合的不完整多视图聚类算法
    李顺勇, 李师毅, 胥瑞, 赵兴旺
    《计算机应用》唯一官方网站    2024, 44 (9): 2696-2703.   DOI: 10.11772/j.issn.1001-9081.2023091253
    摘要304)   HTML9)    PDF (2806KB)(601)    收藏

    基于不完整数据的多视图聚类任务已经成为无监督学习领域的研究热点之一。然而大多数基于“浅层”模型的多视图聚类算法通常在面对大规模高维数据时难以提取和刻画视图内的潜在特征结构;同时,堆叠或求平均的多视图信息融合方式忽视了视图之间的差异性,没有充分考虑各视图对构建公共一致表示的不同贡献。针对以上问题,提出一种基于自注意力融合的不完整多视图聚类算法(IMVCSAF)。首先,基于深度自编码器提取各视图的潜在特征,并采用对比学习的方式最大化各视图间的一致性信息;其次,采用自注意力机制对各视图的潜在表示进行重新编码和融合,并全面考虑和挖掘不同视图之间的内在因果性和特征互补性;再次,基于公共一致表示对缺失实例样本的潜在表示进行预测和恢复,从而完整地实现多视图聚类的过程。在Scene-15、LandUse-21、Caltech101-20和Noisy-MNIST数据集上的实验结果表明,IMVCSAF在满足收敛性要求的前提下得到的准确率均高于其他对比算法,而在50%缺失率的Noisy-MNIST数据集上,IMVCSAF的准确率比次优的COMPLETER(inCOMPlete muLti-view clustEring via conTrastivE pRediction)算法提高了6.58个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    32. 改进掩码自编码器的工业缺陷检测方法
    邓凯丽, 魏伟波, 潘振宽
    《计算机应用》唯一官方网站    2024, 44 (8): 2595-2603.   DOI: 10.11772/j.issn.1001-9081.2023081122
    摘要302)   HTML8)    PDF (4261KB)(24)    收藏

    针对目前只需正常样本即可实现缺陷检测的方法存在漏检或过度检测的问题,构建一种改进掩码自编码器与改进Unet结合的方法实现像素级缺陷检测。首先,采用拟合缺陷模块生成缺陷掩码图像及正常图像对应的缺陷图像;其次,对缺陷图像随机掩码,去除缺陷图像大部分的缺陷信息,激励Transformer结构的自编码器从未掩码的正常区域学习表示并依据上下文修复缺陷图像,为了提高模型对细节的修复能力,设计了新的损失函数;最后,将缺陷图像与修复图像拼接后输入拥有通道方向交叉融合Transformer结构的Unet,实现像素级缺陷检测。实验结果表明,在MVTec AD数据集上,所提方法平均的基于图像的和基于像素的接受者操作特征曲线下的面积值(ROC AUC)分别达到了0.984和0.982,与DRAEM(Discriminatively trained Reconstruction Anomaly Embedding Model)相比分别提高了2.9和3.2个百分点;与CFLOW-AD(Anomaly Detection via Conditional normalizing FLOWs)相比分别提高了3.1和0.8个百分点,证明所提方法具有较高的识别率和检测精度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    33. 基于解耦注意力机制的多变量时序预测模型
    李力铤, 华蓓, 贺若舟, 徐况
    《计算机应用》唯一官方网站    2024, 44 (9): 2732-2738.   DOI: 10.11772/j.issn.1001-9081.2023091301
    摘要300)   HTML11)    PDF (1545KB)(786)    收藏

    针对多变量时序预测难以充分利用序列上下文语义信息及变量间隐含关联信息的问题,提出一种基于解耦注意力机制的多变量时序预测模型Decformer。首先,提出一种解耦注意力机制,从而充分利用嵌入的语义信息提升注意力权值分配的准确度;其次,提出一种不依赖于显式变量关系的模式关联挖掘方法,以挖掘并利用变量间隐含的模式关联信息。在话务量、电力消耗和交通3种不同类型的真实数据集(TTV、ECL和PeMS-Bay)上,与长短期时间序列网络(LSTNet)、Transformer、FEDformer等优秀的开源多变量时序预测模型相比,Decformer在所有预测时间长度上都取得了最高的预测精度。相较于LSTNet,Decformer在TTV、ECL和PeMS-Bay数据集上的平均绝对误差(MAE)分别降低了17.73%~27.32%、10.89%~17.01%和13.03%~19.64%;均方误差(MSE)分别降低了23.53%~58.96%、16.36%~23.56%和15.91%~26.30%。实验结果表明,Decformer能够有效提升多变量时序预测的精度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    34. 基于注意力机制和多尺度融合的 U- Net改进算法
    吴淞, 蓝鑫, 单靖杨, 徐海文
    《计算机应用》唯一官方网站    0, (): 24-28.   DOI: 10.11772/j.issn.1001-9081.2022121844
    摘要300)   HTML6)    PDF (2163KB)(130)    收藏

    针对原始U-Net在医学图像分割任务中计算冗余和难以划分细小结构等问题,提出一种基于注意力机制和多尺度融合的U-Net改进算法。首先,通过在跳跃路径上引入通道注意力机制,网络关注包含更重要信息的通道,从而减少计算资源开销,并提升计算效率;其次,增加特征融合策略为传递给解码器的特征图增加上下文信息,从而实现特征之间的互补和多重利用;最后,使用Dice损失和二元交叉熵损失进行联合优化,以应对细小结构分割时可能出现的损失函数剧烈振荡问题。在Kvasir_seg和DRIVE数据集上进行的实验验证的结果表明,与原始U-Net算法相比,所提改进算法的Dice系数分别提高了1.81和0.82个百分点,灵敏度(SE)分别提高了1.94和3.53个百分点,准确度(Acc)分别提高了1.62和0.04个百分点。可见,所提改进算法能够提升原始U-Net对于细小结构分割的性能。

    图表 | 参考文献 | 相关文章 | 多维度评价
    35. 基于模型预测控制的自动驾驶车辆轨迹规划
    葛超, 张嘉滨, 王蕾, 伦志新
    《计算机应用》唯一官方网站    2024, 44 (6): 1959-1964.   DOI: 10.11772/j.issn.1001-9081.2023050725
    摘要299)   HTML8)    PDF (2720KB)(554)    收藏

    为帮助自动驾驶车辆规划一条安全、舒适和高效的行驶轨迹,提出一种基于模型预测控制的轨迹规划方法。首先,为简化规划的环境,提出一种安全、可行的“三圆”膨胀化的安全区,避免车辆理想化模型引发的碰撞问题;其次,将轨迹规划进行横、纵向空间解耦,横向规划使用模型预测的方法生成一系列满足行驶要求的候选轨迹,纵向规划使用动态规划方法,提高规划的效率;最后,综合考虑影响最优轨迹挑选的因素,提出更符合行驶要求的路径规划和速度规划的最优轨迹评价函数,并通过Matlab/Simulink、Prescan和Carsim软件的联合仿真验证所提算法的有效性。实验结果表明,车辆的舒适度指标、方向盘转角变化和定位精度等均达到预期效果,规划曲线与跟踪曲线完美贴合,验证了所提算法的优越性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    36. 海洋船舶通信网络安全综述
    吴中岱, 韩德志, 蒋海豹, 冯程, 韩冰, 陈重庆
    《计算机应用》唯一官方网站    2024, 44 (7): 2123-2136.   DOI: 10.11772/j.issn.1001-9081.2023070975
    摘要299)   HTML6)    PDF (3942KB)(1094)    收藏

    海上运输是人类最重要的运输方式之一,海上船舶通信网络安全对一个涉海国家的经济发展至关重要。由于海上船舶通信网络基础设施建设远不如陆地互联网络基础设施建设完善,其通信网络存在很多安全漏洞,导致多起船舶在海洋航行时遭受网络攻击。近几年,国内外已有大量有关海上通信网络安全的研究文献,但缺乏海洋船舶通信网络安全研究综述文献发表。为此,针对海洋船舶通信网络结构、存在的网络安全风险及其应对安全措施等研究文献进行系统的梳理和综合讨论。在此基础上,对海上船舶通信网络安全威胁提出应对的策略和建议。

    图表 | 参考文献 | 相关文章 | 多维度评价
    37. 结合空间域和频域信息的双分支低光照图像增强网络
    李大海, 王忠华, 王振东
    《计算机应用》唯一官方网站    2024, 44 (7): 2175-2182.   DOI: 10.11772/j.issn.1001-9081.2023070933
    摘要292)   HTML11)    PDF (3079KB)(471)    收藏

    针对低光照图像增强中纹理细节模糊和颜色失真的问题,从空间域和频域信息结合的角度出发,提出一个端到端的轻量级双分支网络(SAFNet)。SAFNet使用基于Transformer的空间域处理模块和频域处理模块在空间域分支和频域分支分别对图像的空间域信息和傅里叶变换后的频域信息进行处理,并通过注意力机制引导两个分支的特征进行自适应融合,得到最终增强的图像。此外,针对频域信息提出一个频域损失函数作为联合损失函数的一部分,通过联合损失函数在空间域和频域都对SAFNet进行约束。在公开数据集LOL和LSRW上进行实验,在LOL上,SAFNet在客观指标结构相似性(SSIM)和学习感知图像块相似度(LPIPS)两项指标上分别达到0.823和0.114;在LSRW上,峰值信噪比(PSNR)和SSIM分别达到17.234 dB和0.550,均优于LLFormer (Low-Light Transformer)、IAT (Illumination Adaptive Transformer)、 KinD (Kindling the Darkness)++等主流方法,且网络参数量仅为0.07×106;在DarkFace数据集上,使用SAFNet作为预处理步骤对待检测图像进行增强,可以使人脸检测平均精确率从52.6%提升至72.5%。实验结果表明,SAFNet能有效提高低光照图像的质量,并能显著改善下游任务低光照人脸检测的性能。

    图表 | 参考文献 | 相关文章 | 多维度评价
    38. APK-CNN和Transformer增强的多域虚假新闻检测模型
    李金金, 桑国明, 张益嘉
    《计算机应用》唯一官方网站    2024, 44 (9): 2674-2682.   DOI: 10.11772/j.issn.1001-9081.2023091359
    摘要292)   HTML17)    PDF (1378KB)(987)    收藏

    为解决社交媒体新闻中的领域转移、领域标签不完整问题,以及探索更高效的多域新闻文本特征提取和融合网络,提出一种基于APK-CNN(Adaptive Pooling Kernel Convolutional Neural Network)和Transformer增强的多域虚假新闻检测模型Transm3。首先,设计三通道网络对文本的语义、情感和风格信息进行特征提取和表示,并利用多粒度跨域交互器对这些特征进行视图组合;其次,通过优化的软共享内存网络和域适配器来完善新闻领域标签;再次,将Transformer与多粒度跨域交互器结合,使用更先进的融合网络动态加权聚合不同领域的交互特征;最后,将融合特征输入分类器中用于真/假新闻判别。实验结果表明,Transm3与M3FEND(Memory-guided Multi-view Multi-domain FakE News Detection)和EANN(Event Adversarial Neural Networks for multi-modal fake news detection)相比,综合F1值在中文数据集上分别提高了3.68%和6.46%,在英文数据集上分别提高了6.75%和11.93%,在各分领域上F1值也有明显的提高,充分验证了Transm3在多域虚假新闻检测工作上的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    39. 较短的长序列时间序列预测模型
    徐泽鑫, 杨磊, 李康顺
    《计算机应用》唯一官方网站    2024, 44 (6): 1824-1831.   DOI: 10.11772/j.issn.1001-9081.2023060799
    摘要291)   HTML21)    PDF (2751KB)(119)    收藏

    针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    40. 基于自适应阈值学习的时序因果推断方法
    赵秦壮, 谭红叶
    《计算机应用》唯一官方网站    2024, 44 (9): 2660-2666.   DOI: 10.11772/j.issn.1001-9081.2023091278
    摘要289)   HTML27)    PDF (1142KB)(191)    收藏

    时序数据存在近因性特点,即变量值普遍依赖近期的历史信息,而现有时序因果推断方法没有充分考虑时序数据的这种特性,在通过假设检验推断不同延迟的因果关系时使用统一的阈值,难以有效推断较弱的因果关系。针对上述问题,提出基于自适应阈值学习的时序因果推断方法:首先提取数据特性,其次根据不同延迟下数据呈现的性质,自动地学习假设检验过程中使用的阈值组合,最后将该阈值组合用于PC(Peter-Clark)算法、PCMCI(Peter-Clark and Momentary Conditional Independence)算法和VAR-LINGAM(Vector AutoRegressive LINear non-Gaussian Acyclic Model)算法的假设检验过程,以得到更准确的因果关系结构。在仿真数据集上的实验结果表明,采用所提方法的自适应PC算法、自适应PCMCI算法和自适应VAR-LINGAM算法的F1值都有所提高。

    图表 | 参考文献 | 相关文章 | 多维度评价
2025年 45卷 4期
刊出日期: 2025-04-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会