全文下载排行

    一年内发表文章 | 两年内 | 三年内 | 全部 | 最近1个月下载排行 | 最近1年下载排行

    当前位置: 一年内发表文章
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 在线教育学习者知识追踪综述
    赵雅娟, 孟繁军, 徐行健
    《计算机应用》唯一官方网站    2024, 44 (6): 1683-1698.   DOI: 10.11772/j.issn.1001-9081.2023060852
    摘要312)   HTML21)    PDF (2932KB)(3839)    收藏

    知识追踪(KT)是在线教育中一项基础且具有挑战性的任务,同时也是从学习者的学习历史中建立学习者知识状态模型的任务,可以帮助学习者更好地了解自己的知识状态,使教育者更好地了解学习者的学习情况。对在线教育学习者KT研究进行综述。首先,介绍KT的主要任务和发展历程;其次,从传统KT模型和深度学习KT模型两个方面展开叙述;再次,归纳总结相关数据集和评价指标,并汇总KT的相关应用;最后,总结KT现状,讨论它们的不足和未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 大语言模型的技术应用前景与风险挑战
    徐月梅, 胡玲, 赵佳艺, 杜宛泽, 王文清
    《计算机应用》唯一官方网站    2024, 44 (6): 1655-1662.   DOI: 10.11772/j.issn.1001-9081.2023060885
    摘要1280)   HTML102)    PDF (1142KB)(2305)    收藏

    针对大语言模型(LLM)技术的快速发展,剖析它的技术应用前景和风险挑战,对通用人工智能(AGI)的发展和治理有重要参考价值。首先,以Multi-BERT(Multilingual Bidirectional Encoder Representations from Transformers)、GPT(Generative Pre-trained Transformer)和ChatGPT(Chat Generative Pre-Trained Transformer)等语言模型为代表,综述LLM的发展脉络、核心技术和评估体系;其次,分析LLM现存的技术局限和安全风险;最后,提出LLM在技术上改进、政策上跟进的建议。分析指出作为发展阶段的LLM,现有模型存在非真实性及偏见性输出、实时自主学习能力欠缺,算力需求庞大,对数据质量和数量依赖性强,语言风格单一;存在数据隐私、信息安全和伦理等方面的安全风险。未来发展可从技术上继续改进,从“大规模”转向“轻量化”、从“单模态”走向“多模态”、从“通用”迈入“垂类”;从政策上实时跟进,实施有针对性的监管措施,规范应用和发展。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 海洋船舶通信网络安全综述
    吴中岱, 韩德志, 蒋海豹, 冯程, 韩冰, 陈重庆
    《计算机应用》唯一官方网站    2024, 44 (7): 2123-2136.   DOI: 10.11772/j.issn.1001-9081.2023070975
    摘要299)   HTML6)    PDF (3942KB)(1094)    收藏

    海上运输是人类最重要的运输方式之一,海上船舶通信网络安全对一个涉海国家的经济发展至关重要。由于海上船舶通信网络基础设施建设远不如陆地互联网络基础设施建设完善,其通信网络存在很多安全漏洞,导致多起船舶在海洋航行时遭受网络攻击。近几年,国内外已有大量有关海上通信网络安全的研究文献,但缺乏海洋船舶通信网络安全研究综述文献发表。为此,针对海洋船舶通信网络结构、存在的网络安全风险及其应对安全措施等研究文献进行系统的梳理和综合讨论。在此基础上,对海上船舶通信网络安全威胁提出应对的策略和建议。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 基于多域特征提取的多变量时间序列异常检测
    赵培, 乔焰, 胡荣耀, 袁新宇, 李敏悦, 张本初
    《计算机应用》唯一官方网站    2024, 44 (11): 3419-3426.   DOI: 10.11772/j.issn.1001-9081.2023111636
    摘要247)   HTML4)    PDF (754KB)(1022)    PDF(mobile) (1807KB)(23)    收藏

    多变量时间序列(MTS)数据具有高维性,且分布复杂多变,现有的异常检测模型在面对MTS数据集时普遍存在误判率高、训练困难等问题,且多数模型仅考虑时间序列样本的时空特征,对时间序列特征的学习并不全面。为了解决以上问题,提出一种基于多域特征提取的MTS异常检测模型(MFE-TS)。首先,从原始数据域出发,使用长短期记忆(LSTM)网络与卷积神经网络(CNN)分别提取MTS的时间相关性和空间相关性特征。其次,用傅里叶变换将原始时间序列转换到频域空间,并利用Transformer学习数据在频域空间的幅度与相位特征。多域特征学习能更全面地建模时间序列特征,从而提高模型对MTS的异常检测性能。此外,引入掩码策略,进一步增强模型的特征学习能力,并使模型具备一定的抗噪性。实验结果表明,MFE-TS在多个真实MTS数据集上展现了优越的性能,同时在含有噪声的数据集中仍能保持较好的检测效果。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. APK-CNN和Transformer增强的多域虚假新闻检测模型
    李金金, 桑国明, 张益嘉
    《计算机应用》唯一官方网站    2024, 44 (9): 2674-2682.   DOI: 10.11772/j.issn.1001-9081.2023091359
    摘要292)   HTML17)    PDF (1378KB)(987)    收藏

    为解决社交媒体新闻中的领域转移、领域标签不完整问题,以及探索更高效的多域新闻文本特征提取和融合网络,提出一种基于APK-CNN(Adaptive Pooling Kernel Convolutional Neural Network)和Transformer增强的多域虚假新闻检测模型Transm3。首先,设计三通道网络对文本的语义、情感和风格信息进行特征提取和表示,并利用多粒度跨域交互器对这些特征进行视图组合;其次,通过优化的软共享内存网络和域适配器来完善新闻领域标签;再次,将Transformer与多粒度跨域交互器结合,使用更先进的融合网络动态加权聚合不同领域的交互特征;最后,将融合特征输入分类器中用于真/假新闻判别。实验结果表明,Transm3与M3FEND(Memory-guided Multi-view Multi-domain FakE News Detection)和EANN(Event Adversarial Neural Networks for multi-modal fake news detection)相比,综合F1值在中文数据集上分别提高了3.68%和6.46%,在英文数据集上分别提高了6.75%和11.93%,在各分领域上F1值也有明显的提高,充分验证了Transm3在多域虚假新闻检测工作上的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 基于深度强化学习的移动机器人三维路径规划方法
    马天, 席润韬, 吕佳豪, 曾奕杰, 杨嘉怡, 张杰慧
    《计算机应用》唯一官方网站    2024, 44 (7): 2055-2064.   DOI: 10.11772/j.issn.1001-9081.2023060749
    摘要406)   HTML29)    PDF (5732KB)(939)    收藏

    针对三维未知环境中存在的高复杂度和不确定性的问题,提出一种在有限观测空间优化策略下基于深度强化学习的移动机器人三维路径规划方法。首先,在有限观测空间下采用深度图信息作为智能体的输入,模拟移动受限且未知的复杂三维空间环境;其次,设计了两阶段离散动作空间下的动作选择策略,包括方向动作和位移动作,以减少搜索步数和时间;最后,在近端策略优化(PPO)算法基础上,添加门控循环单元(GRU)结合历史状态信息,以提升未知环境中搜索策略的稳定性,进而提高规划路径准确度和平滑度。实验结果表明,相较于A2C(Advantage Actor-Critic),所提方法的平均搜索时间缩短了49.07%,平均规划路径长度缩短了1.04%,同时能够完成线性时序逻辑约束下的多目标路径规划任务。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基于Lobatto方法和Legendre多项式的PINN求解微分代数方程
    赖帅, 唐卷, 梁锟, 陈佳盛
    《计算机应用》唯一官方网站    2025, 45 (3): 911-919.   DOI: 10.11772/j.issn.1001-9081.2024030313
    摘要134)   HTML1)    PDF (2186KB)(929)    收藏

    当前求解微分代数方程(DAE)的神经网络方法基本都采用数据驱动策略,需要大量的数据集,因此存在对神经网络的结构和参数选择敏感、求解结果精度低、稳定性差等问题。针对这些问题,提出一种基于Lobatto方法和Legendre多项式的物理信息神经网络(LL-PINN)。首先,基于离散型物理信息神经网络(PINN)的计算框架,结合Lobatto IIIA方法求解DAE高精度和高稳定性的优点,将DAE的物理信息嵌入Lobatto IIIA时间迭代格式中,并使用PINN对该时间迭代进行近似数值求解;其次,采用单隐藏层的神经网络结构,利用勒让德多项式展开项的逼近能力,应用这些多项式作为激活函数来简化网络模型调整的过程;最后,采用时间区域分解方案构建网络模型,即对每个等分的子时间区域依次使用一个微分神经网络和一个代数神经网络,从而实现DAE的高精度连续时间预测。数值算例结果表明,基于勒让德多项式和4阶的Lobatto方法的LL-PINN实现了对DAE的高精度求解。与函数连接理论(TFC)试验解模型和PINN模型相比,LL-PINN的微分变量和代数变量的预测解与精确解的绝对误差显著降低,精度提高了一个或两个量级。因此,所提求解模型对求解DAE问题具有较好的计算精度,可为解决具有挑战性的偏DAE提供可行的解决方案。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 面向数据异构的聚类联邦学习算法
    陈庆礼, 郭渊博, 方晨
    《计算机应用》唯一官方网站    2025, 45 (4): 1086-1094.   DOI: 10.11772/j.issn.1001-9081.2024010132
    摘要103)   HTML3)    PDF (2335KB)(912)    收藏

    联邦学习(FL)是一种在隐私保护和通信效率方面极具潜力的新型机器学习模型构建范式,然而现实物联网(IoT)场景中客户端节点数据之间会存在异构性,学习一个统一的全局模型会导致模型准确率下降。为了解决这一问题,提出一种基于特征分布的聚类联邦学习(CFLFD)算法。在该算法中,对每个客户端节点从模型提取的特征进行主成分分析(PCA)后所得到的结果进行聚类,以将具有相似数据分布的客户端节点聚类在一起相互协作,从而提高模型准确率。为验证算法的有效性,在3个数据集和4种基准算法上进行大量实验。实验结果表明,与FedProx相比,CFLFD算法在CIFAR10数据集和Office-Caltech10数据集上将模型准确率分别提升了1.12和3.76个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于Attention-1DCNN-CE的加密流量分类方法
    耿海军, 董赟, 胡治国, 池浩田, 杨静, 尹霞
    《计算机应用》唯一官方网站    2025, 45 (3): 872-882.   DOI: 10.11772/j.issn.1001-9081.2024030325
    摘要80)   HTML2)    PDF (2750KB)(901)    收藏

    针对传统加密流量识别方法存在多分类准确率低、泛化性不强以及易侵犯隐私等问题,提出一种结合注意力机制(Attention)与一维卷积神经网络(1DCNN)的多分类深度学习模型——Attention-1DCNN-CE。该模型包含3个核心部分:1)数据集预处理阶段,保留原始数据流中数据包间的空间关系,并根据样本分布构建成本敏感矩阵;2)在初步提取加密流量特征的基础上,利用Attention和1DCNN模型深入挖掘并压缩流量的全局与局部特征;3)针对数据不平衡这一挑战,通过结合成本敏感矩阵与交叉熵(CE)损失函数,显著提升少数类别样本的分类精度,进而优化模型的整体性能。实验结果表明,在BOT-IOT和TON-IOT数据集上该模型的整体识别准确率高达97%以上;并且该模型在公共数据集ISCX-VPN和USTC-TFC上表现优异,在不需要预训练的前提下,达到了与ET-BERT(Encrypted Traffic BERT)相近的性能;相较于PERT(Payload Encoding Representation from Transformer),该模型在ISCX-VPN数据集的应用类型检测中的F1分数提升了29.9个百分点。以上验证了该模型的有效性,为加密流量识别和恶意流量检测提供了解决方案。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 应对零日攻击的混合车联网入侵检测系统
    方介泼, 陶重犇
    《计算机应用》唯一官方网站    2024, 44 (9): 2763-2769.   DOI: 10.11772/j.issn.1001-9081.2023091328
    摘要321)   HTML13)    PDF (2618KB)(888)    收藏

    现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测系统。首先,设计了一种数据增强算法,通过先去除噪声再生成的方法解决了数据样本不平衡的问题;其次,将非线性特征交互引入复杂的特征组合,设计了一个特征工程模块;最后,将Transformer的自注意力机制和ANFIS的自适应学习方法相结合,以提高特征表征能力,减少对样本数据的依赖。在CICIDS-2017和UNSW-NB15入侵数据集上将所提系统与Dual-IDS等先进(SOTA)算法进行比较。实验结果表明,对于零日攻击,所提系统在CICIDS-2017入侵数据集上实现了98.64%的检测精确率和98.31%的F1值,在UNSW-NB15入侵数据集上实现了93.07%的检测精确率和92.43%的F1值,验证了所提算法在零日攻击检测方面的高准确性和强泛化能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. YOLO算法及其在自动驾驶场景中目标检测综述
    邓亚平, 李迎江
    《计算机应用》唯一官方网站    2024, 44 (6): 1949-1958.   DOI: 10.11772/j.issn.1001-9081.2023060889
    摘要993)   HTML42)    PDF (1175KB)(881)    收藏

    自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You Only Look Once)算法在自动驾驶领域中的目标检测研究现状,从以下4个方面分析。首先,总结单阶段YOLO系列检测算法思想及其改进方法,分析YOLO系列算法的优缺点;其次,论述YOLO算法在自动驾驶场景下目标检测中的应用,从交通车辆、行人和交通信号识别这3个方面分别阐述和总结研究现状及应用情况;此外,总结目标检测中常用的评价指标、目标检测数据集和自动驾驶场景数据集;最后,展望目标检测存在的问题和未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 基于深度学习的网络入侵检测系统综述
    邓淼磊, 阚雨培, 孙川川, 徐海航, 樊少珺, 周鑫
    《计算机应用》唯一官方网站    2025, 45 (2): 453-466.   DOI: 10.11772/j.issn.1001-9081.2024020229
    摘要168)   HTML18)    PDF (1427KB)(831)    收藏

    入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新研究进展。首先,简要概述当前几种IDS;其次,介绍基于深度学习的IDS中常用的数据集和评价指标;然后,总结网络IDS中常用的深度学习模型及其应用场景;最后,探讨当前相关研究面临的问题,并提出未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于集成学习的雷达自动目标识别综述
    洪梓榕, 包广清
    《计算机应用》唯一官方网站    2025, 45 (2): 371-382.   DOI: 10.11772/j.issn.1001-9081.2024020179
    摘要122)   HTML8)    PDF (1391KB)(825)    收藏

    雷达自动目标识别(RATR)在军事和民用领域中都有广泛的应用。由于集成学习通过集成已有的机器学习模型改善模型分类性能,具有较好的鲁棒性,因此被越来越多地应用于雷达目标检测与识别领域。系统梳理和提炼现有相关文献对集成学习在RATR中的研究进展。首先,介绍集成学习的概念、框架与发展历程,将集成学习与传统机器学习、深度学习方法对比,并总结集成学习理论和常见集成学习方法的优势、不足及研究的主要聚焦点;其次,简述RATR的概念;接着,重点阐述集成学习在不同雷达图像分类特征中的应用,详细讨论基于合成孔径雷达(SAR)和高分辨距离像(HRRP)的目标检测与识别方法,并总结这些方法的研究进展和应用成效;最后,讨论RATR以及集成学习所面临的挑战,并对集成学习在雷达目标识别领域的应用进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 位置大数据的联邦学习统计预测与差分隐私保护方法
    晏燕, 钱星颖, 闫鹏斌, 杨杰
    《计算机应用》唯一官方网站    2025, 45 (1): 127-135.   DOI: 10.11772/j.issn.1001-9081.2024010068
    摘要147)   HTML3)    PDF (4957KB)(818)    收藏

    针对分布式位置大数据收集导致的信息孤岛问题和位置隐私泄露面临的风险,提出一种基于联邦学习的位置大数据统计预测与隐私保护方法。首先,构建基于横向联邦学习的位置大数据统计预测发布框架,该框架允许各行政区域的数据收集者保留各自的原始数据,并使多个参与方通过交换训练参数来协同完成预测模型的训练任务;其次,针对具有时空序列特性的位置大数据密度统计预测问题,设计PVTv2-CBAM,以提高客户端预测结果的准确性;最后,提出一种差分隐私预算的动态分配和调整算法,并结合MMA (Modified Moments Accountant)机制实现对客户端模型的差分隐私保护。实验结果表明,相较于卷积神经网络(CNN)、长短期记忆(LSTM)网络、卷积LSTM(ConvLSTM)模型,PVTv2-CBAM在Yellow_tripdata数据集和T-Driver轨迹数据集上预测的平均绝对误差分别降低0~62%和39%~44%;所提差分隐私预算动态分配和调整算法在调整阈值为0.3和0.7时,使模型预测的准确率与无动态调整相比分别提高了约5%与6%。以上结果验证了所提方法的可行性和有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 融合1D-CNN与BiGRU的类不平衡流量异常检测
    陈虹, 齐兵, 金海波, 武聪, 张立昂
    《计算机应用》唯一官方网站    2024, 44 (8): 2493-2499.   DOI: 10.11772/j.issn.1001-9081.2023081112
    摘要377)   HTML2)    PDF (1194KB)(818)    收藏

    网络流量异常检测是利用各种检测技术分析判断网络流量,发现网络中潜在的攻击,是一种有效的网络安全防护方法。针对高维海量数据和不同攻击类别的网络流量数据不均衡而导致检测准确率低、误报率高的问题,提出一种融合一维卷积神经网络(1D-CNN)和双向门控循环单元(BiGRU)的类不平衡流量异常检测模型。首先,针对类不平衡数据,通过使用改进的合成少数类过采样技术(SMOTE)即Borderline-SMOTE和基于高斯混合模型(GMM)的欠采样聚类技术进行平衡处理;然后,使用1D-CNN提取数据的局部特征,并利用BiGRU更好地提取数据中的时序特征;最后,在UNSW-NB15数据集对所提模型进行验证,所提模型的准确率为98.12%,误报率为1.28%。结果表明,所提模型提高了对少数攻击的识别率,检测精度高于其他经典机器学习和深度学习模型。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 知识图谱在装备故障诊断领域的研究与应用综述
    武杰, 张安思, 吴茂东, 张仪宗, 王从宝
    《计算机应用》唯一官方网站    2024, 44 (9): 2651-2659.   DOI: 10.11772/j.issn.1001-9081.2023091280
    摘要526)   HTML52)    PDF (2858KB)(814)    收藏

    知识图谱从装备故障诊断数据中提取有用的知识,通过(实体,关系,实体)的三元组方式,对复杂装备的故障诊断信息进行有效管理,实现装备故障的快速诊断。首先,介绍装备故障诊断知识图谱的相关概念,分析装备故障诊断领域知识图谱的构建框架;其次,归纳国内外装备故障诊断知识图谱的知识抽取、知识融合以及知识推理等几个关键技术的研究现状;最后,对目前装备故障诊断知识图谱应用进行总结,提出该领域知识图谱构建的不足和面临的挑战,并对未来装备故障诊断领域提供一些新的思路。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 基于丰度协调技术的企业ESG指标预测模型
    李严, 叶冠华, 李雅文, 梁美玉
    《计算机应用》唯一官方网站    2025, 45 (2): 670-676.   DOI: 10.11772/j.issn.1001-9081.2024030262
    摘要97)   HTML5)    PDF (1400KB)(807)    收藏

    环境、社会及治理(ESG)指标是评估企业可持续发展的重要指标。现有的ESG评估体系存在覆盖范围狭窄、主观性强和时效性差等问题,因此,迫切需要研究能利用企业数据准确预测ESG指标的预测模型。针对企业数据中ESG关联特征存在信息丰度不一致的问题,提出一种基于丰度协调技术的企业ESG指标预测模型RCT (Richness Coordination Transformer),其中上游丰度协调模块通过自编码器协调异质丰度特征,从而提高下游模块的ESG指标预测性能。在真实数据集上的实验结果表明,与模型时间卷积网络(TCN)、长短期记忆(LSTM)网络、自注意力模型(Transformer)、极限梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)相比,RCT模型在各项预测指标上均表现最优,验证了RCT模型在预测ESG指标上的有效性和优越性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 基于解耦注意力机制的多变量时序预测模型
    李力铤, 华蓓, 贺若舟, 徐况
    《计算机应用》唯一官方网站    2024, 44 (9): 2732-2738.   DOI: 10.11772/j.issn.1001-9081.2023091301
    摘要300)   HTML11)    PDF (1545KB)(786)    收藏

    针对多变量时序预测难以充分利用序列上下文语义信息及变量间隐含关联信息的问题,提出一种基于解耦注意力机制的多变量时序预测模型Decformer。首先,提出一种解耦注意力机制,从而充分利用嵌入的语义信息提升注意力权值分配的准确度;其次,提出一种不依赖于显式变量关系的模式关联挖掘方法,以挖掘并利用变量间隐含的模式关联信息。在话务量、电力消耗和交通3种不同类型的真实数据集(TTV、ECL和PeMS-Bay)上,与长短期时间序列网络(LSTNet)、Transformer、FEDformer等优秀的开源多变量时序预测模型相比,Decformer在所有预测时间长度上都取得了最高的预测精度。相较于LSTNet,Decformer在TTV、ECL和PeMS-Bay数据集上的平均绝对误差(MAE)分别降低了17.73%~27.32%、10.89%~17.01%和13.03%~19.64%;均方误差(MSE)分别降低了23.53%~58.96%、16.36%~23.56%和15.91%~26.30%。实验结果表明,Decformer能够有效提升多变量时序预测的精度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 时频域多尺度交叉注意力融合的时间序列分类方法
    王美, 苏雪松, 刘佳, 殷若南, 黄珊
    《计算机应用》唯一官方网站    2024, 44 (6): 1842-1847.   DOI: 10.11772/j.issn.1001-9081.2023060731
    摘要453)   HTML10)    PDF (2511KB)(782)    收藏

    针对时间序列子序列间的潜在信息交互不足导致分类准确率低的问题,提出时频域多尺度交叉注意力融合的时间序列分类方法TFFormer(Time-Frequency Transformer)。首先,将原始时间序列的时频域谱分别划分为等长子序列,经线性投影后加入位置信息解决时间序列的点值耦合问题;其次,通过改进的多头自注意力(IMHA)模块使模型关注更重要的序列特征,解决长时间序列的前后依赖问题;最后,构造多尺度时频域交叉注意力(CMA)模块增强时间序列在时域和频域之间的信息交互,使模型进一步挖掘序列的频域信息。实验结果表明,在Trace、StarLightCurves和UWaveGestureLibraryAll数据集上,相较于全卷积网络(FCN),所提方法的分类准确率分别提高了0.3、0.9和1.4个百分点,验证了通过增强时间序列时域和频域间的信息交互,可以提高模型收敛速度和分类精度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 融合多尺度语义和双分支并行的医学图像分割网络
    袁宝华, 陈佳璐, 王欢
    《计算机应用》唯一官方网站    2025, 45 (3): 988-995.   DOI: 10.11772/j.issn.1001-9081.2024030358
    摘要97)   HTML1)    PDF (2085KB)(772)    收藏

    在医学图像分割网络中,卷积神经网络(CNN)虽然能提取丰富的局部特征细节,但存在远程信息捕获不足的问题。Transformer虽然可以捕捉长距离的全局特征依赖关系,但是会破坏局部特征细节。为充分利用2种网络特征的互补性,提出一种用于医学图像分割的CNN和Transformer并行的融合网络——PFNet。该网络的并行融合模块使用一对基于CNN和Transformer的相互依赖的并行分支来高效地学习局部和全局两方面的辨别特征,并以交互方式交叉融合局部特征和长距离特征的依赖关系;同时,为恢复在下采样期间丢失的空间信息以增强细节的保留,提出多尺度交互(MSI)模块提取分层CNN分支生成的多尺度特征的局部上下文以进行远程依赖关系建模。实验结果表明,PFNet优于MISSFormer(Medical Image Segmentation tranSFormer)和UCTransNet(U-Net with Channel Transformer module)等先进方法。在Synapse和ACDC(Automated Cardiac Diagnosis Challenge)数据集上,相较于最优的基线方法MISSFormer,PFNet的平均Dice相似系数(DSC)分别提高1.27%和0.81%。可见,PFNet能实现更精准的医学图像分割。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断
    秦璟, 秦志光, 李发礼, 彭悦恒
    《计算机应用》唯一官方网站    2024, 44 (9): 2970-2974.   DOI: 10.11772/j.issn.1001-9081.2023091371
    摘要241)   HTML8)    PDF (1067KB)(764)    收藏

    抑郁症的诊断主要依赖于医师的咨询和量表评估等主观方法,可能导致误诊。脑电图(EEG)具有高时间分辨率、低成本、易于设置和无创等优点,因此可以用作精神障碍(如抑郁症)的定量测量工具。深度学习算法目前在EEG信号上有多种应用,其中就包括抑郁症的诊断和分类。EGG信号在通过自注意力机制处理时有大量的冗余部分,因此,提出一种基于概率稀疏自注意力机制的卷积神经网络(PSANet)。首先,根据采样因数在自注意力机制中选取少量最关键的注意力点,在运用自注意力机制的同时克服它计算成本高的缺点,使它可以在脑电长序列数据上应用;同时将脑电图与患者的生理量表进行嵌合,从而进行多维度诊断。在一个包含抑郁症患者和健康对照组的数据集上进行实验评估,实验结果表明,PSANet表现出较高的分类准确性,参数量也低于EEGNet等对比方法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 基于自适应差分隐私与客户选择优化的联邦学习方法
    徐超, 张淑芬, 陈海田, 彭璐璐, 张帅华
    《计算机应用》唯一官方网站    2025, 45 (2): 482-489.   DOI: 10.11772/j.issn.1001-9081.2024020162
    摘要136)   HTML2)    PDF (2308KB)(743)    收藏

    将差分隐私应用于联邦学习的方法是保护训练数据隐私的关键技术之一。针对之前多数工作未考虑参数的异质性,对训练参数均匀裁剪使每轮加入的噪声都是均匀的,从而影响模型收敛和训练参数质量的问题,提出一种基于梯度裁剪的自适应噪声添加方案。考虑梯度的异质性,在不同轮次为不同客户端执行自适应的梯度裁剪,从而使噪声大小自适应调整;同时,为进一步提升模型性能,对比传统的客户端随机采样方式,提出一种结合轮盘赌与精英保留的客户端采样方法。结合上述2种方法,提出一种结合客户端选择的自适应差分隐私联邦学习(CS&AGC DP_FL)方法。实验结果表明,在隐私预算为0.5时,相较于自适应差分隐私的联邦学习方法(Adapt DP_FL),所提方法能在相同级别的隐私约束下使最终的模型分类准确率提升4.9个百分点,并且在收敛速度方面,所提方法相较于对比方法进入收敛状态所需的轮次减少了4~10轮。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. Wi-Fi7多链路通感一体化的功率和信道联合智能分配算法
    王靖, 方旭明
    《计算机应用》唯一官方网站    2025, 45 (2): 563-570.   DOI: 10.11772/j.issn.1001-9081.2024020191
    摘要80)   HTML0)    PDF (2623KB)(737)    收藏

    针对下一代Wi-Fi7设备中多链路传输时通信与感知一体化的功率和信道联合资源分配的问题,根据多链路设备(MLD)特殊的上下两层媒体接入控制层(MAC)结构,提出一种基于QMIX的联合功率控制与信道分配的多链路多智能体强化学习算法(JPCQMIX)。该算法将MLD的每个下层MAC即每条链路作为一个智能体,并在上层MAC中设置混合网络用来处理所有下层MAC的局部值函数,以达到中心式训练的效果。训练完成后,每个下层MAC进入分布式执行模式,并独立地与它的局部环境进行交互,以进行功率控制和信道分配决策。仿真结果表明,相较于多智能体深度Q网络(MADQN)算法和传统启发式粒子群优化(PSO)算法,所提算法在通信吞吐量性能上分别提高了20.51%和29.10%;同时,所提算法在面对不同感知精度阈值和不同链路最低信干噪比(SINR)时,鲁棒性更好。可见,JPCQMIX能有效提升系统在满足感知精度条件下的通信吞吐量。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 面向深度分类模型超参数自优化的代理模型
    张睿, 潘俊铭, 白晓露, 胡静, 张荣国, 张鹏云
    《计算机应用》唯一官方网站    2024, 44 (10): 3021-3031.   DOI: 10.11772/j.issn.1001-9081.2023091313
    摘要185)   HTML8)    PDF (2779KB)(732)    收藏

    为进一步提高深度分类模型超参数多目标自适应寻优效率,提出一种筛选式增强Dropout代理(FEDA)模型。首先,构建点对互信息约束增强的双通道Dropout神经网络,增强对高维超参数深度分类模型的拟合,并结合聚集选解策略加速候选解集的选取;其次,设计一种结合模型管理策略的算法FEDA-ARMOEA(FEDA model-A novel preference-based dominance Relation for Multi-Objective Evolutionary Algorithm)均衡种群个体的收敛性和多样性,协助FEDA提高深度分类模型训练及超参数自优化效率。将FEDA-ARMOEA与EDN-ARMOEA(Efficient Dropout neural Network-assisted AR-MOEA)、HeE-MOEA(Heterogeneous Ensemble-based infill criterion for Multi-Objective Evolutionary Algorithm)等算法进行对比实验,实验结果表明,FEDA-ARMOEA在56组测试问题中的41组上表现较好。在工业应用焊缝数据集MTF和公共数据集CIFAR-10上实验,FEDA-ARMOEA优化的分类模型的精度分别达到96.16%和93.79%,训练时间相较于对比算法分别降低6.94%~47.04%和4.44%~39.07%,均优于对比算法,验证了所提算法的有效性和泛化性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. 基于多尺度门控膨胀卷积网络的时间序列预测算法
    曾渝, 张洋, 曾尚, 付茂栗, 何启学, 曾林隆
    《计算机应用》唯一官方网站    2024, 44 (11): 3427-3434.   DOI: 10.11772/j.issn.1001-9081.2023111583
    摘要237)   HTML5)    PDF (803KB)(725)    收藏

    针对当前时间序列预测任务存在的高维特征、大规模数据以及对预测准确性高要求等问题,提出一种基于多尺度趋势-周期分解的多头门控膨胀卷积网络模型。该模型采用多尺度分解方法,将原始协变量序列和预测变量序列分解为各自的周期项和趋势项,从而实现独立的预测。对于周期项,引入多头门控膨胀卷积网络的编码器,以提取各自的周期信息;在解码器阶段,使用交叉注意力机制进行通道信息的交互融合,并将预测变量的周期信息采样对齐后通过时间注意力与通道融合信息进行周期预测。对趋势项则采用自回归方式进行趋势预测。最后将趋势预测与周期预测的结果相加得到预测序列。与长短期记忆(LSTM)、Informer等多个主流基准模型进行比较,所提模型在ETTm1、ETTh1等5个数据集上的均方误差(MSE)平均下降了19.2%~52.8%,平均绝对误差(MAE)平均下降了12.1%~33.8%。通过消融实验验证了所提出的多尺度分解模块、多头门控膨胀卷积以及时间注意力模块能提升时序预测的准确度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 基于语义增强模式链接的Text-to-SQL模型
    吴相岚, 肖洋, 刘梦莹, 刘明铭
    《计算机应用》唯一官方网站    2024, 44 (9): 2689-2695.   DOI: 10.11772/j.issn.1001-9081.2023091360
    摘要256)   HTML24)    PDF (739KB)(721)    收藏

    为优化基于异构图编码器的Text-to-SQL生成效果,提出SELSQL模型。首先,模型采用端到端的学习框架,使用双曲空间下的庞加莱距离度量替代欧氏距离度量,以此优化使用探针技术从预训练语言模型中构建的语义增强的模式链接图;其次,利用K头加权的余弦相似度以及图正则化方法学习相似度度量图使得初始模式链接图在训练中迭代优化;最后,使用改良的关系图注意力网络(RGAT)图编码器以及多头注意力机制对两个模块的联合语义模式链接图进行编码,并且使用基于语法的神经语义解码器和预定义的结构化语言进行结构化查询语言(SQL)语句解码。在Spider数据集上的实验结果表明,使用ELECTRA-large预训练模型时,SELSQL模型比最佳基线模型的准确率提升了2.5个百分点,对于复杂SQL语句生成的提升效果很大。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 基于语音和文本的双模态情感识别综述
    韩令敏, 陈仙红, 熊文梦
    《计算机应用》唯一官方网站    2025, 45 (4): 1025-1034.   DOI: 10.11772/j.issn.1001-9081.2024030319
    摘要276)   HTML33)    PDF (1625KB)(720)    收藏

    情感识别是一种让计算机识别和理解人类情感的技术,在众多领域都起着重要的作用,也是人工智能领域重要的发展方向。因此,梳理与归纳基于语音和文本的双模态情感识别的研究现状:首先,分类阐述情感表示空间;其次,按照情感数据库的情感表示空间对这些数据库进行分类,并总结常见的多模态情感数据库;再次,介绍基于语音和文本的双模态情感识别方法,包括特征提取、模态融合和决策分类,重点介绍模态融合方法并将这些方法分为特征级融合、决策级融合、模型级融合和多层次融合这4类;此外,比较和分析一系列语音和文本双模态情感识别方法的结果;最后,介绍情感识别的应用场景、面临的挑战与未来的发展方向。以上旨在对多模态情感识别,尤其是对基于语音和文本的双模态情感识别的相关工作进行分析与总结,并为情感识别提供有价值的参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 面向联邦学习的随机验证区块链构建
    陈廷伟, 张嘉诚, 王俊陆
    《计算机应用》唯一官方网站    2024, 44 (9): 2770-2776.   DOI: 10.11772/j.issn.1001-9081.2023091254
    摘要207)   HTML6)    PDF (1975KB)(713)    收藏

    针对现有联邦学习模型中存在的本地设备模型梯度泄露、中心化服务器设备可随意退出、全局模型无法抵御恶意用户攻击等问题,提出面向联邦学习的随机验证区块链构建及隐私保护方法。首先,引入可验证哈希函数以随机选举区块链的领导节点,确保节点出块的公平性;其次,设计了验证节点的交叉检测机制防御恶意节点的攻击;最后,基于差分隐私技术训练区块链节点,根据节点对模型的贡献程度构建激励规则进行节点激励,提高联邦学习模型的训练准确率。实验结果表明,所提方法在20%恶意节点的情况下,对于恶意节点的投毒攻击能够达到80%的准确率,相较于Google FL提升了61个百分点,而所提方法在噪声方差为10-3时梯度匹配损失比Google FL提升了14个百分点。可见,相较于Google FL等联邦学习方法,所提方法在提升模型的安全性前提下能够保证良好的精确度,具有更好的安全性和鲁棒性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 基于解耦注意力与幻影卷积的轻量级人体姿态估计
    陈俊颖, 郭士杰, 陈玲玲
    《计算机应用》唯一官方网站    2025, 45 (1): 223-233.   DOI: 10.11772/j.issn.1001-9081.2024010099
    摘要137)   HTML3)    PDF (3442KB)(702)    收藏

    随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影卷积的轻量级人体姿态估计网络(DGLNet)。具体来说,DGLNet以小型高分辨率网络(Small HRNet)模型为基础架构,通过引入解耦注意力机制构建DFDbottleneck模块;采用shuffleblock的结构对基础模块进行重新设计,即用轻量级幻影卷积替代计算量大的点卷积,并利用解耦注意力机制增强模块性能,从而构建DGBblock模块;此外,用幻影卷积和解耦注意力重新构建的深度可分离卷积模块来替代原过渡层模块,从而构建GSCtransition模块,进一步减少计算量并增强特征交互性和提高性能。在COCO验证集上的实验结果显示,DGLNet优于轻量级高分辨率网络(Lite-HRNet),在计算量和参数量不增加的情况下,最高精度达到了71.9%;与常见的轻量级姿态估计网络MobileNetV2和ShuffleNetV2相比,DGLNet在仅使用21.2%和25.0%的计算量情况下分别实现了4.6和8.3个百分点的精度提升;在AP50的评价标准上,DGLNet超过了大型高分辨率网络(HRNet)的同时计算量和参数量远小于HRNet。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 运动想象脑电图的空域特征迁移核学习方法
    杨思琪, 罗天健, 严宣辉, 杨光局
    《计算机应用》唯一官方网站    2024, 44 (11): 3354-3363.   DOI: 10.11772/j.issn.1001-9081.2023111593
    摘要156)   HTML4)    PDF (1026KB)(686)    收藏

    运动想象脑电(MI-EEG)信号在构建临床辅助康复的无创脑机接口(BCI)中获得了广泛关注。受限于不同被试者的MI-EEG信号样本分布存在差异,跨被试MI-EEG信号的特征学习成为研究重点。然而,现有的相关方法存在域不变特征表达能力弱、时间复杂度较高等问题,无法直接应用于在线BCI。为解决该问题,提出黎曼切空间特征迁移核学习(TKRTS)方法,并基于此构建了高效的跨被试MI-EEG信号分类算法。TKRTS方法首先将MI-EEG信号协方差矩阵投影至黎曼空间,并在黎曼空间上对齐不同被试者的协方差矩阵,同时提取黎曼切空间(RTS)特征;随后,学习RTS特征集上的域不变核矩阵,从而获得完备的跨被试MI-EEG特征表达,并通过该矩阵训练核支持向量机(KSVM)进行分类。为验证TKRTS方法的可行性与有效性,在3个公开数据集上分别进行多源域-单目标域以及单源域-单目标域的实验,平均分类准确率分别提升了0.81个百分点和0.13个百分点。实验结果表明,与主流方法对比,TKRTS方法提升了平均分类准确率并保持相似的时间复杂度。此外,消融实验结果验证了TKRTS方法对跨被试特征表达的完备性和参数不敏感性,适合构建在线脑接机口。

    图表 | 参考文献 | 相关文章 | 多维度评价
2025年 45卷 4期
刊出日期: 2025-04-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会